

February 02 2026
RE: Support to SB 1541

Dear Sen. Sollman, Chair, Sen. Brock Smith, Vice-Chair, Sen. Jeff Golden, Sen. Khanh Pham and Sen. Noah Robinson:

My name is Kathaleen B Parker, from Senate District 10 in South Salem, and I support Oregon's Climate Superfund Cost Recovery program to recover the costs of climate change.

My experiences with climate change began in the 1960's when I was a school child in Southern California and the sky outside was dark and smelly with thick smog. Now in my current home among the farms and vineyards, forests and rivers in Oregon, I am worried the most about atmospheric river flooding. An atmospheric river is a long, narrow band of concentrated water vapor in the sky. These rivers in the atmosphere act like conveyor belts, transporting enormous volumes of moisture from the tropics toward the West Coast of North America. Scientists say climate change—specifically warming ocean and air temperatures—is increasing the moisture content of the atmosphere. That means stronger atmospheric rivers and, in many cases, more intense atmospheric river flooding.

From 1980-2024, there were 41 confirmed weather/climate disaster events with losses exceeding \$1 billion each to affect Oregon. These events included 16 drought events, 3 flooding events, 1 freeze event, 2 severe storm events, 16 wildfire events, and 3 winter storm events.

Now more than ever, leaders must look at the history of man-made pollution (anthropogenic pollution) during which humanity has become a planetary force of change.

Last year pollution actually grew faster than economic activity, and according to a study from Rhodium Energy's Director Ben King, he estimated that the U.S. put 5.9 billion tons of carbon dioxide equivalent in the air in 2025, which is 139 million tons more than in 2024.

Beginning in the mid- to late-19th century, human activity began pushing the greenhouse effect to new levels. The unchecked burning of fossil fuels over the past 150 years has drastically increased the presence of atmospheric greenhouse gases, most notably carbon dioxide.

Right now, atmospheric concentrations of greenhouse gases like carbon dioxide, methane, and nitrous oxide are the highest they've been in the last 800,000 years. Some greenhouse gases, like hydrochlorofluorocarbons (HFCs), do not even exist in nature. By continuously pumping these gases into the air, we helped raise the earth's average temperature by about 1.9 degrees Fahrenheit during the 20th century—which has brought us to our current era of deadly, and increasingly routine, weather extremes.

Our ways of generating power for electricity, heat, and transportation, our built environment and industries, our ways of interacting with the land, and our consumption habits together serve as the primary drivers of climate change. The cars, trucks, ships, and planes that we use to transport ourselves and our goods are a major source of global greenhouse gas emissions. (In the United States, they actually constitute the single-largest source.) Burning petroleum-based fuel in combustion engines releases massive amounts of carbon dioxide into the atmosphere.

But while things are moving in the right direction, they're not moving fast enough. One way to reduce the industrial sector's carbon footprint is to increase efficiency through improved technology and stronger enforcement of pollution regulations.

And, since major infrastructure projects rely heavily on industries like cement manufacturing (responsible for 7 percent of annual global greenhouse gas), policy mandates must leverage the government's purchasing power to grow markets for cleaner alternatives, and ensure that state and federal agencies procure more sustainably produced materials for these projects.

The advent of modern, industrialized agriculture has significantly altered the vital but delicate relationship between soil and the climate—so much so that agriculture accounted for 11 percent of U.S. greenhouse gas emissions in 2020.

This sector is especially notorious for giving off large amounts of nitrous oxide and methane, powerful gases that are highly effective at trapping heat. The widespread adoption of chemical fertilizers, combined with certain crop-management practices that prioritize high yields over soil health, means that agriculture accounts for nearly three-quarters of the nitrous oxide found in our atmosphere.

But farmers and ranchers—especially Indigenous farmers, who have been tending the land according to sustainable principles—are reminding us that there's more than one way to feed the world. By adopting the philosophies and methods associated with regenerative agriculture, we can slash emissions from this sector while boosting our soil's capacity for sequestering carbon from the atmosphere, and producing healthier foods.

Oil and gas lead to emissions at every stage of their production and consumption—not only when they're burned as fuel, but just as soon as we drill a hole in the ground to begin extracting them. Fossil fuel development is a major source of methane, which invariably leaks from oil and gas operations: drilling, fracking, transporting, and refining.

The reason nuclear energy is often confused with renewable resources is because it is a low-emissions energy option, like solar or wind. During energy creation, it barely harms the planet.

The big, climate-affecting decisions made by utilities, industries, and governments are shaped, in the end, by us: our needs, our demands, our priorities. However, there are two red flags environmentalists address in nuclear discourse. Mining uranium is certainly not a low-emissions activity. It causes irreversible destruction to habitats and potentially displaces species and communities. Additionally, these power plants create nuclear waste, which has a questionable history.

Radioactive waste is the biggest concern among energy professionals and climate activists alike. Some plants put the waste in mass storage, while others may illegally dump it. More than 250,000 metric tons of this stuff is sitting in worldwide plants in some type of storage. While this keeps it out of waterways and soil, the radiation is another concern. Innovators are trying to find ways to ethically dispose of this waste, but it is a pricing, safety and technological hurdle.

We can find ways to cool the planet down, fight climate change, and chart a course toward a more just, equitable, and sustainable future.

Thank you, Kathaleen B Parker

What Are the Causes of Climate Change? NRDC | September 13, 2022 | by Jeff Turrentine

<https://www.nrdc.org/stories/what-are-causes-climate-change>

<https://revolutionized.com/is-nuclear-energy-renew/>

<https://teamrubiconusa.org/news-and-stories/atmospheric-river-flooding-devastating-west-coast/>

<https://youtu.be/BgPlfUb3VTM?si=z8YkuDDN-YEwnOGk>

<https://www.ncei.noaa.gov/access/billions/state-summary/OR#:~:text=From%201980%2D2024%2C%20there%20were,ands%203%20winter%20storm%20events.>

<https://www.latimes.com/environment/story/2026-01-13/u-s-carbon-pollution-rose-in-2025-experts-blame-cold-winter-high-natural-gas-prices-data-centers#:~:text=But%20that%20changed%20last%20year,tons%20more%20than%20in%202024. U.S. carbon pollution rose in 2025. Experts blame cold winter, high natural gas prices, data centers> January 13 2026 L.A.Times, by Seth Borenstein.