Nuclear Energy Overview

Christine King, Director Gateway for Accelerated Innovation in Nuclear

Oregon House Interim Committee on Climate, Energy and Environment December 10, 2024

Activities

Reaching U.S. net-zero goals, we need new nuclear capacity

"Power system decarbonization modeling, regardless of level of renewables deployment, suggests that the U.S. will need ~700-900 GW of additional clean, firm capacity to reach net-zero."

Domestic nuclear capacity has the potential to scale from ~100 GW in 2023 to ~300 GW by 2050

- Preservation of existing fleet 100 GW
 - Large light water reactors (generally ~1000 MW) are essential for bulk electricity production.
- 200 GWs from new nuclear
 - Small modular reactors (SMRs) are generally considered ~50 to ~350 MW.
 - Microreactors are generally <50 MW.

Pathways to Commercial Liftoff: Advanced Nuclear

https://liftoff.energy.gov/wp-content/uploads/2024/09/LIFTOFF_DOE_AdvNuclear-vX6.pdf

State Nuclear Energy Feasibility Studies

Completed Working Groups Ongoing Working Groups

- Nebraska
- South Dakota

Completed Studies

- Connecticut
- Kentucky
- Maryland
- Michigan
- New Hampshire
- Pennsylvania
- Virginia
- Montana

- North Dakota
- Tennessee
- Texas
- Virginia

Ongoing Studies

- Colorado
- Florida
- Indiana
- Nebraska
- North Carolina
- Tennessee
- **Texas**

Powered by Bing © GeoNames, Microsoft, TomTom

Advanced Nuclear in North America

- 34 active projects that includes a mix of reactor demonstrations, commercial demonstrations, and commercial reactors
- 12 deployment dates prior to 2030
- Variety of agreements, 7 are firm contracts

14 MICROREACTORS		18 SMALL MODULAR REACTORS	
4 ^H	HGH TEMPERATURE GAS REACTOR	4	HIGH TEMPERATURE GAS REACTOR
3 s	ODIUM FAST REACTOR	3	SODIUM FAST REACTOR
2 м	MOLTEN SALT REACTOR	3	MOLTEN SALT FAST REACTOR
3 s	OLID CORE HEAT PIPE	7	LIGHT WATER REACTOR
2 ^T	ſBD	1	FLUORIDE SALT-COOLED HIGH-TEMPERATURE REACTOR

- Small ceramic uranium pellets are stacked inside metal tubes, called fuel rods.
- Fuel rods are bundled together into fuel assemblies that are placed inside the nuclear reactor.
- Assemblies are moved underwater from the reactor to a storage pool located inside or next to reactor building
- The water in the pool shields workers from radiation emitted from the spent nuclear fuel while the fuel cools
- Five years or more later, spent nuclear fuel assemblies are transferred from the pool to dry storage casks
- The casks are designed and certified to provide radiation shielding

On-Site Storage of Used Fuel

Source: https://www.nrc.gov/waste/spent-fuel-storage/diagram-typical-dry-cask-system.html

The 57 used fuel casks hold all the fuel from 49 years of the DC Cook Plant in Michigan operations. Both units at DC Cook are still operating.

