#### OREGON



WATER RESOURCES D E P A R T M E N T

#### HOUSE INTERIM COMMITTEE ON AGRICULTURE, LAND USE, NATURAL RESOURCES, AND WATER

Douglas Woodcock, Acting Director Annette Liebe, Technical Services Division Administrator Justin Iverson, Groundwater Section Manager

**Oregon Water Resources Department** 

November 7, 2023



### **Groundwater Development**



### Key Groundwater Concept





### Key Groundwater Concept





### Groundwater Development



#### Density of Water Well Logs per 640 Acres

|               | 1 - 16    | (<= 1 well / 40 acres)  |
|---------------|-----------|-------------------------|
|               | 17 - 32   | (<= 1 well / 20 acres)  |
|               | 33 - 64   | (<= 1 well / 10 acres)  |
| $\overline{}$ | 65 - 128  | (<= 1 well / 5 acres)   |
| С             | 129 - 256 | (<= 1 well / 2.5 acres) |
| $\overline{}$ | 257 - 320 | (<= 1 well / 2.0 acres) |
| $\bigcirc$    | >320      | (<= 1 well / 1.0 acres) |
| Counties      |           |                         |

Ground Water Restricted Areas

#### 1955 4,660 well logs

#### 2016 256,800 well logs





### Wells in Oregon





#### Over-Allocation: Excessively Declined Water Levels





#### Over-Allocation: Excessively Declined Water Levels

Groundwater Levels for WASC 2672



# Development has led to 125 feet of water level decline over ~60 years in this area.



### **Impacts of Over-Allocation**

- drying up of wells
- reduced streamflow
- increased pumping costs
- deterioration of water quality
- curtailment of rights that people have invested in





## Groundwater Allocation Rulemaking



### Allocation in Statute

ORS 537.621(2)(a), the "fourpart test":

• Use is allowed in the basin

• Water is available

- Existing rights will not be injured
- Meets additional Commission standards and rules

...and (2)(b) Other public interest criteria in statutory policy can be addressed as needed





### Water is Available if...

#### **Current Rules:**

Requested source is available if not overallocated:

- Allocate up to the full annual recharge volume
- Avoid short-term, acute impacts to surface water





### Water is Available if...

#### **Current Rules:**

Requested source is available if not overallocated:

### Proposed Rules:

Requested source is available only if:

- Allocate up to the full
  Annual recharge
  Volume
  - Water levels are Reasonably Stable

 Avoid short-term, acute
 Hydraulically connected surface water is available for further appropriation



### GW Allocation Rulemaking

Extensive Public Involvement:

- Commission agenda items since December 2021
- GWAC engagement 7 meetings since March 2022
- Public outreach 5 meetings in Fall 2022
- RAC meetings 6 meetings since April 2023; 2 more planned in December and January
- Additional outreach and meetings as requested

All rulemaking information and public meeting recordings are available on the Department's website.



### Key Issue 1: Defining "Reasonably Stable Water Level"



#### Reasonably Stable Water Levels Science-Based Framework



Excerpted and modified from: Gleeson and others, 2020, Annual Review of Earth and Planetary Science, 48, 431-63 (Figure 2b). Available at: https://www.annualreviews.org/doi/10.1146/annurev-earth-071719-055251



#### Reasonably Stable Water Levels Data-Driven Threshold Definitions



Excerpted and modified from: Gleeson and others, 2020, Annual Review of Earth and Planetary Science, 48, 431-63 (Figure 2b). Available at: https://www.annualreviews.org/doi/10.1146/annurev-earth-071719-055251



#### Reasonably Stable Water Levels Harney Basin Example

#### HARN 1095 and HARN 1990 4100 0 너 전 Depth below highest known (ft) 4075 -Proposed Elevation (ft) **Rules** 4050 Declined Excessively 4025 1970 1980 2020 19902000 2010



Impacts of Not Maintaining Reasonably Stable Water Levels

### **Domestic Dry Wells:**

- •1,225 dry well complaints since July 2021
- Average cost to deepen a well is \$26,500

#### State-Wide Risk (all water wells):

- •Up to 13,000 wells may go dry given a water level drop of 25 feet
- •Up to 51,000 wells may go dry given a water level drop of 50 feet



Key Issue 2: Redefining "Potential for Substantial Interference" (PSI) with Surface Water



### The Source of Water to Wells

#### "<u>All water [pumped] by wells is balanced by a loss</u> of water somewhere."

- C.V. Theis, 1940: The Source of Water Derived From Wells



Source: Theis, C.V., The Source of Water Derived From Wells; Essential Factors Controlling the Response of an Aquifer to Development. First published by the American Society of Civil Engineers in its Civil Engineering magazine (p. 277-280), Available on line at https://water.usgs.gov/ogw/pubs/Theis-1940.pdf



#### Streamflow in August comes from Groundwater





## Implications



### Meeting Future Needs

### Existing Options:

- Conservation
  Incentives
- Aquifer
  Storage/Recharge
- Water Re-use
- Transfers

### Potential New/Future Opportunities:

- Market based approaches
- Mitigation programs
- Outcomes from basin and regional planning



### **Closing Thoughts**

- Cost of inaction is too high
- Growth and economic expansions are possible
- Adaptation and innovation is an Oregon value



