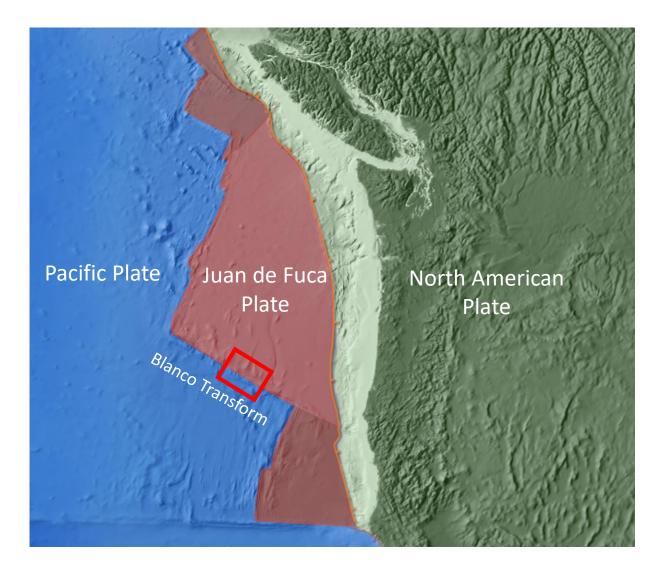
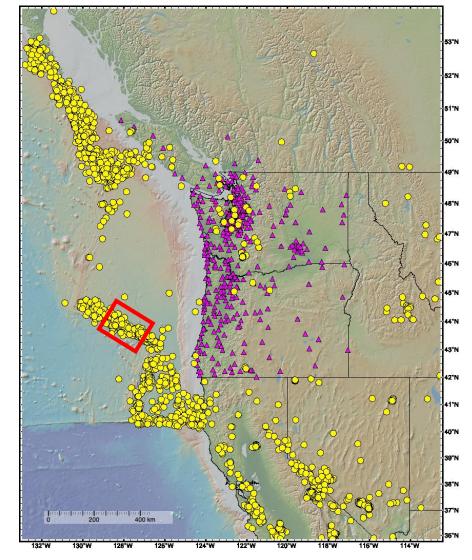
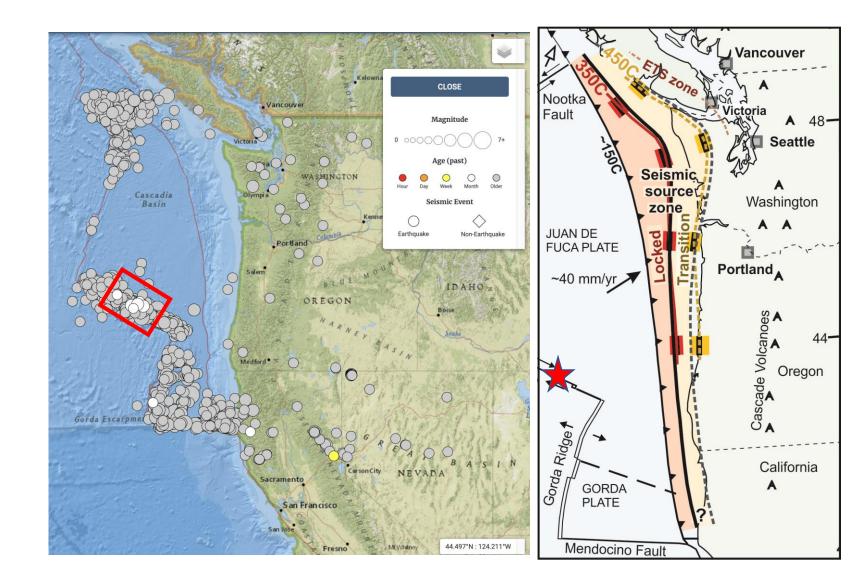

Update on Recent Offshore Seismic Activity and ShakeAlert's Performance


Dr. Doug Toomey University of Oregon Oregon Hazards Lab

Outline


- 1. Recent Offshore Earthquake Activity
 - Review of recent & historical offshore seismicity
 - Recent events do not present societal risks
- 2. ShakeAlert Performance
 - When does ShakeAlert generate an alert?
 - Recent events occurred outside of alerting region
 - ShakeAlert performed well by not generating an alert
- 3. Update on ShakeAlert
 - Public Alerting, March 11, 2021!
 - Progress with State Bonds
 - Stakeholder partnerships
 - FEMA pre-applications that leverage funds and benefit regions impacted by 2020 wildfires

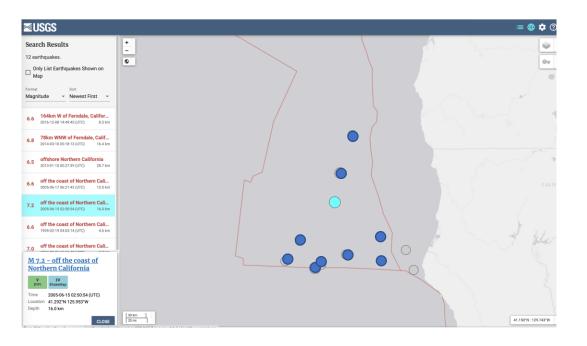
M>4.5 between 1960 to 2020 (yellow); seismic sites (magenta) approximate location of recent seismicity (red box)

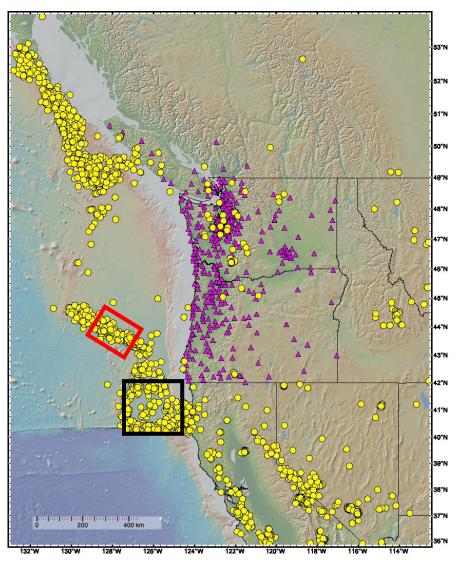

In the oceans, earthquakes cluster near plate boundaries

M>4.5 between 1960 to 2020 (yellow); seismic sites (magenta) approximate location of recent seismicity (red box) ³

April 29, 2021: Blanco Transform Sequence

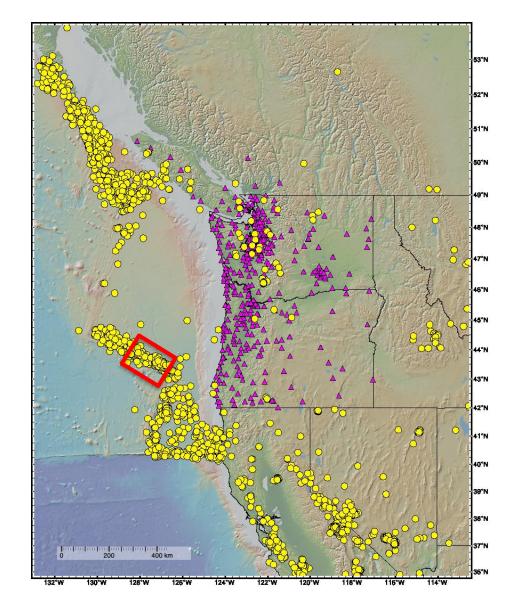
- Largest event M5.4
- Sequence of M4 to M5.4 events
- Epicenters (white circles in read box) ~200 miles from Oregon coast
- Not a societal risk
- Shaking not felt on coast
- Type of earthquake does not generate a tsunami


Modified Mercalli Intensity (MMI) Scale: What a person feels


Intensity	Shaking	Description/Damage	
I	Not felt	Not felt except by a very few under especially favorable conditions.	
Ш	Weak	Felt only by a few persons at rest, especially on upper floors of buildings.	
Ш	Weak	Felt quite noticeably by persons indoors, especially on upper floors of buildings. Many people do not recognize it as an earthquake. Standing motor cars may rock slightly. Vibrations similar to the passing of a truck. Duration estimated.	
IV	Light	Felt indoors by many, outdoors by few during the day. At night, some awakened. Dishes, windows, doors disturbed; walls make cracking sound. Sensation like heavy truck striking building. Standing motor cars rocked noticeably.	
V	Moderate	Felt by nearly everyone; many awakened. Some dishes, windows broken. Unstable objects overturned. Pendulum clocks may stop.	
VI	Strong	Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen plaster. Damage slight.	
VII	Very strong	Damage negligible in buildings of good design and construction; slight to moderate in well-built ordinary structures; considerable damage in poorly built or badly designed structures; some chimneys broken.	
VIII	Severe	Damage slight in specially designed structures; considerable damage in ordinary substantial buildings with partial collapse. Damage great in poorly built structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy furniture overturned.	
IX	Violent	Damage considerable in specially designed structures; well-designed frame structures thrown out of plumb. Damage great in substantial buildings, with partial collapse. Buildings shifted off foundations.	
x	Extreme	Some well-built wooden structures destroyed; most masonry and frame structures destroyed with foundations. Rails bent.	

Other offshore events

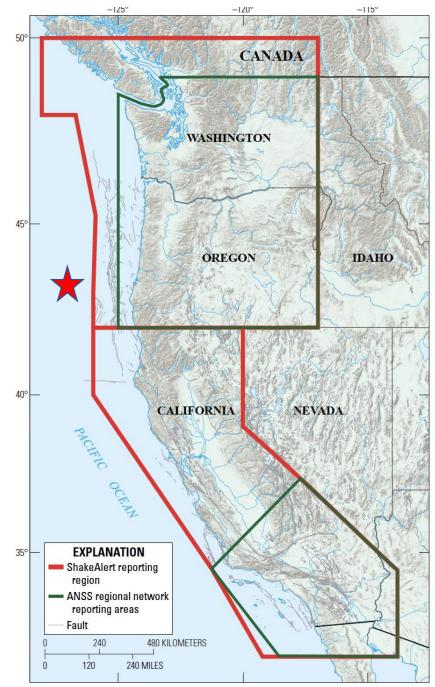
- The region offshore of Northern California is seismically active (black box)
- Largest event, M7.2 occurred on June 15, 2005
 - 100 miles offshore
 - Strike slip earthquake
 - Did not generate tsunami
 - MMI on coast of CA typically III to IV (weak to light shaking)



Outline

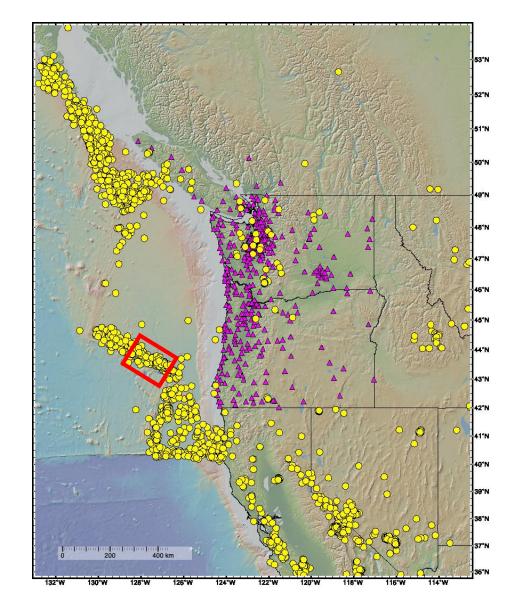
- 1. Recent Offshore Earthquake Activity
 - Review of recent & historical offshore seismicity
 - Recent events do not present societal risks

2. ShakeAlert Performance


- When does ShakeAlert generate an alert?
- Recent events occurred outside of alerting region
- ShakeAlert performed well by not generating an alert
- 3. Update on ShakeAlert
 - Public Alerting, March 11, 2021!
 - Progress with State Bonds
 - Stakeholder partnerships
 - FEMA pre-applications that leverage funds and benefit regions impacted by 2020 wildfires

M>4.5 between 1960 to 2020 (yellow); seismic sites (magenta) approximate location of recent seismicity (red box)

When is a ShakeAlert Delivered to Public?


- Earthquake must be within alerting region (limits of red polygon)
- Earthquake magnitude and shaking intensity exceed thresholds
 - App Alerts (> M4.5, MMI 3+ area; weak)
 - WEA Alerts (> M5.0, MMI 4+ area; light)
- The Blanco earthquakes (red star) were outside the alerting region; also, onshore MMI << 3
- ShakeAlert correctly did NOT deliver an alert; good performance

Base from Esri © 2018 and its licensors

Outline

- 1. Recent Offshore Earthquake Activity
 - Review of recent & historical offshore seismicity
 - Recent events do not present societal risks
- 2. ShakeAlert Performance
 - When does ShakeAlert generate an alert?
 - Recent events occurred outside of alerting region
 - ShakeAlert performed well by not generating an alert
- 3. Update on ShakeAlert
 - Public Alerting, March 11, 2021!
 - Progress with State Bonds
 - Stakeholder partnerships
 - FEMA pre-applications that leverage funds and benefit regions impacted by 2020 wildfires

M>4.5 between 1960 to 2020 (yellow); seismic sites (magenta) approximate location of recent seismicity (red box)

Shake Alert

ShakeAlert Development Timeline

- 2006 2009 Algorithm development (offline)
- 2010 2012 RT Demo System, 1st beta users
- 2012 2016 CA Production Prototype (V1.0)
- 2017 West Coast Prototype (V1.2)
- 2018 Open for Business, to institutional users
- 2019 California public rollout, Oct. 17, WEA and Apps
- 2021 Oregon <u>public rollout</u>, March 11 (Tohoku Anniv.) Public alerting with WEA and Android
- 2021 Washington public rollout, May 2021 Public alerting with WEA, Android, and App
- 2021 2025 Complete stations, enter O&M phase

About 40 organizations are using or developing to alert personnel and take automated actions.

Water: Albany, Eugene, Grants Pass, Gresham, South Fork Education: Portland State U., Linn-Benton CC, UofO

ShakeAlert Seismic Station Inventory	CISN	PNSN	West Coast
Target Number	1,115	560	1,675
Contributing now	764	349	1113
Percent complete	69%	62%	66%
Station to be built	351	211	562
Unfunded stations	91	102	193

Alert time assumes 4 stations to trigger and 2.7sec for detection and delivery

Public Alerting Technologies to Phones

Wireless Emergency Alert

(WEA) (cell carriers)

Sent via IPAWS = FEMA's Integrated Public Alert and Warning System (e.g. AMBER)

Cover and the co

Android Alerts (Google)

(36% of phones in OR)

- 'Take Action' (MMI 5+)
 - 'Be aware' (MMI 3-4)
 - 'Earthquake Occurred' (late)

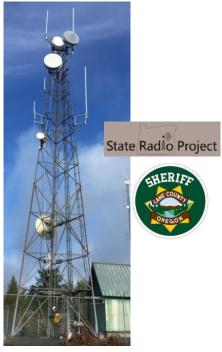
QuakeAlertUSA Early Warning Labs

ShakeAlert Performance Since CA Public Rollout (10/17/19)

- Number of Public Alerts
 - **31 App Alerts** (> M4.5, MMI 3+ area)
 - 7 WEA Alerts (> M5.0, MMI 4+ area)
 - 3 missed alerts (all outside network)
 - 2 false alerts (real offshore events, mislocated)
- Time to Issue Alerts (after quake begins) (Alert time depends on station coverage)
 - Median 8.6 sec, can be under 5 sec
- Time to Deliver Alerts
 - WEA: Median 16 sec (highly variable) Minimum of 2 sec
 - Android: >80% of users in < 5 seconds
 2.2 million users notified of one LA event

Resiliency 2025 — State bonding

- State funding Major milestone
 - The Governor's 2018 ask was for \$12M and included support for wildfire mitigation
 - August 2020 special session awarded \$7.5M for ShakeAlert (removed wildfire technology)
 - Complete buildout of ShakeAlert by 2023 (including networking upgrades)
 - Network upgrades are providing leveraging opportunities for wildfire mitigation and economic recovery


STATE OF OREGON Office of the Governor **KATE BROWN**

Resiliency 2025: Improving Our Readiness for the Cascadia Earthquake and Tsunami

The Governor has directed the State Resilience Office to implement a statewide emergency warning system by 2023 that ties multi-hazard events: **earthquakes, wildland fires, landslides, and flooding events** into one alerting and monitoring system.

UO rooftop microwave: Receive hub for 6 seis stations

Shake Alert

State Bond Project 2021 Progress

- 7 New UO Project Personnel Hired:
 - Project management, field recon/deployment
- Rapid progress on shovel-ready sites:
 - Dozens of sits reconned, permitting underway or complete.
 Staging for contractor-facilitated installs later in 2021
- Seismic Site and Telemetry Site Buildouts:
 - UO staff installing sites in advance of contractor efforts
 - \$500k in seismic equipment purchased ------>
- Telemetry planning, coordination is key:
 - UO Internal Network analysis working group created
 - ODOT State Radio Project focus
 - Ongoing partnerships w/ LinkOregon (fiber), Counties;
 Lane/Washington/Clackamas (wireless)
- Public Engagement:
 - March 11, 2021 Public Rollout. We must finish sensor buildout and strengthening of telemetry
- Staging of multiple contractors well underway:
 - Fabrication, seismic+telemetry installers, NEPA expertise

Roman Nose seis station: collocated at Douglas County comms site, BLM land

Euchre Mountain seis station: collocated at ODOT-SRP site, state microwave backhaul


Buck Mountain ODOT hub: link between UO and Lane County

State Bonds are Leveraging Wildfire Recovery

FEMA Projects Proposed

- McKenzie-Santiam-Sisters Broadband and multi-hazards arrays
 - Mitigate risks of wildfires, landslides, flooding, while providing resilient communication infrastructure that enhances economic recovery
 - Diverse partners
- Rogue Valley Alert Wildfire Mitigation Project
 - Mitigate wildfire risks along the wildlandurban interface from Ashland to Medford
 - 11 municipalities involved
- State funding of wildfire technology would provide additional leveraging of federal and private sector support

