Indoor Air Quality in K-12 Schools Layered Risk (Dose) Reduction Amidst COVID-19

Richard L. Corsi, Ph.D., P.E.

H. Chik M. Erzurumlu Dean Maseeh College of Engineering & Computer Science

Portland State University

www.corsiaq.com www.safeairspaces.com

Credentials

- 25 years at U Texas at Austin (top 10 engineering college)
- Research on indoor air quality (reducing exposures)
- Endowed research chair (≈ 5-10% of faculty)
- Member of the Academy of Distinguished Teachers (< 5%)
- Honored as Emeritus Chair & Distinguished Teaching Professor (UT Austin)
- Distinguished Alumnus College of Engineering, UC Davis (2016)
- Past President of Academy of Fellows of ISIAQ
- Chair of National Academies Committee on Reducing Exposure to PM2.5

Sources of Emissions

- Breathing
- Speaking
- Singing
- Coughing
- Resuspending?

- Virus not naked (embedded in particles)
- Particles = combo of mucous & saliva
- Aerosol particles critical
 - Tiny (invisible), suspended, penetrate RS

Exposure Pathways & Fate

Inhaled Deposited Dose

$Dose_{inhal,i} = C_i (\#/L) \times B (L/min) \times t (min) \times f_{dep,i}$

- C_i = concentration of particles of size i
 - emissions; mask; ventilation; control
- B = Respiratory minute volume
 - activity (can vary significantly)
- t = Time in space with an infector
- **f**_{dep,i} = **Deposition of particles** of size i in resp
 - particle size; breathing mode; activity; (location)

Layered Risk (Dose) Reduction Strategy (LRRS)

LRRS can lead to dose reduction > 95%

See the following webinar for details on each layer: <u>https://www.youtube.com/watch?v=SPfHpHRJN9g&fe</u> <u>ature=youtu.be</u>

SAFE AIR SPACES COVID-19 Risk Estimator

The SAFEAIRSPACES COVID-19 Aerosol Relative Risk Estimator

Estimate Your Risk

Joint effort between U of Oregon & Portland State

www.safeairspaces.com

- Educational tool (layered risk reduction)
- Respiratory deposition & risk
- Factors: emissions, surface deposition ventilation, filtration, masks, time in space, area & height
- Single zone (multiple coming)
- Far-field (working on near-field)
- Adaptable

Scenario 1 – No Masks & Under-Ventilated

No masks; < ASHRAE 62.1; No filtration; High emitter; 2.5 hr exposure

Scenario 2 – Masks & Under-Ventilated

Masks for all; < ASHRAE 62.1; No filtration; High emitter; 2.5 hr exposure

Risk Reduction = 62%

Scenario 3 – Masks + Increased Ventilation

Masks for all; > ASHRAE 62.1; No filtration; High emitter; 2.5 hr exposure

Risk Reduction = 82%

Scenario 4 – Masks + Increased Ventilation + Filtration + Outdoor Mask Break (20 min)

Masks for all; > ASHRAE 62.1; Filtration; High emitter; 2.5 hr exposure

Risk Reduction = 92%

Closure

- Schools critical for EVERYBODY
- Multiple benefits for children
- Need schools to be safe as possible
- Layered dose (risk) reduction works
- Use tools to educate and plan*

* A number of useful tools and resources are attached to this presentation, as well as more detailed slides on individual dose and risk reduction strategies.

Some Additional Resources & Tools

ASHRAE Epidemic Task Force - Schools

Introduction

Background and General Recommendations

General Operations References

- Determining Building Readiness
- Checklist for Unoccupied Buildings
- Startup Checklist for HVAC Systems Prior to Occupancy

Equipment & System Specific Checks & Verifications During Academic Year

- Cleaning & Air Flush
- Boilers
- Chilled, Hot & Condenser Water Systems
- Air Cooled Chillers
- Water Cooled Chillers
- Cooling Towers & Evaporative-Cooled Devices
- <u>Steam Distribution Systems</u>
- HVAC Water Distribution Systems
- Pumps
- <u>Air Handling Units</u>
- Roof Top Units
- Unitary & Single Zone Equipment

New/Modified Facility Design Recommendations

- Introduction
- Designer Guidelines General School
- Nurses Office General Requirements

Filtration Upgrades

- Introduction
- Filtration Basics
- Filtration Target Level
- Information Gathering Stage
- Data Analysis & Review
- Implementation & Considerations

Operation of Occupied Facilities Controlling Infection Outbreak in School Facilities

Higher Education Facilities

- Student Health Facilities
- Laboratories
- Athletic Facilities
- Residence Facilities
- Large Assembly

Disclaimer

https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-reopening-schools-and-universities-c19-guidance.pdf

EPA Tools for Schools, etc.

Harvard T.H. Chan School of Public Health

https://schools.forhealth.org

AIHA – Reopening Guidance

https://aiha-assets.sfo2.digitaloceanspaces.com/AIHA/resources/Reopening-Guidance-for-Schools-K-12_GuidanceDocument.pdf

FATIMA Model (NIST)

Search NIST

Q ≡ Menu

SOFTWARE

FaTIMA

The web-based tool *Fate and Transport of Indoor Microbiological Aerosols* (FaTIMA) allows for the determination of the indoor fate of microbiological aerosols associated with ventilation, filtration, deposition and inactivation mechanisms. FaTIMA provides a representation of a single, well-mixed zone that is served by a mechanical ventilation system and incorporates particle source and removal mechanisms. The simple mechanical ventilation system model

//www.nist.gov/sites/default/files/images/2020/05/12/FaTIMA.png

Type of Software Web Application

Last Updated 2020-09-04

NIST Author William Stuart Dols

Brian Polidoro

https://www.nist.gov/services-resources/software/fatima

CU Boulder Aerosol Transmission Estimator

A	В	с	0	E	F	G
	¢.	-				
Estimation of COVID-19	aerosol tran	smiss	ion: n	haster spread	dsheet, ada	apt this one to your case - Default values are for
This is a general encodeboot applic	able to any cituation	on under	the acru	motions of this me	dal Sea notar	enacifie to this case (if analicable) at the user better
Important incude as highlighted in or	able to any situati	ee for voi	ine assu	impoons or ens me	dei - See notes	specific to this case (ii applicable) at the very bottom
Other more specialized inputs are h	anyo - unanyo ina	H - chang	a only for	r more advanced a	oplications	
Calculations are not highlighted - do	ing ing ined in year	inlose un	and cur	a you know what y	ppications	
Results are in blue these are the r	numbers of interes	t for most	neonie	e you know what y	ou are using	
	idinipera or interes	101 11031	heobie			
Environmental Parameters						
	Value			Value in other u	inits	Source / Comments
Length of room	25	ft		7.6	m	Can enter as ft or as m (once entered as m, changing in ft doe
Width of room	20	ft	=	6,1	m	Can enter as ft or as m (once entered as m, changing in ft doe
	500	sq ft		47	m2	Can overwrite the m2 one. If you want to enter sq ft, enter "=B
Height	10	ft	=	3.1	m	Can enter as ft or as m (once entered as m, changing in ft doe
Volume				142	m3	Volume, calculated. (Can also enter directly, then changing din
Pressure	0.95	atm				Used only for CO2 calculation
Temperature	20	с				Use web converter if needed for F> C. Used for CO2 calcu
Relative Humidity	50	%				Not yet used, but may eventually be used for survival rate of vi
Background CO2 Outdoors	415	ppm				See readme
Duration of event	50	min		0.8	h	Value for your situation of interest
	100	timor				For a a multiple close meetings, multiple commutes in public t

Courtesy Jose L. Jimenez

Aerosol Science & Indoor Air Researchers

https://tinyurl.com/FAQ-aerosols

FAQs on Protecting Yourself from COVID-19 Aerosol Transmission

Shortcut to this page: <u>https://tinyurl.com/FAQ-aerosols</u> Version: 1.65, 15-Sep-2020

If you want to jump over other details and go straight to the recommendations, click here.

0. Questions about these FAQs

0.1. What is the goal of these FAQs?

0.2. Who has written these FAQs?

0.3. I found a mistake, or would like something to be added or clarified, can you do that?

0.4. Are these FAQs available in other languages?

0.5. Can I use the information here in other publications etc.?

1. General questions about COVID-19 transmission

1.1. How can I get COVID-19?

1.2. What is the relative importance of the routes of transmission?

1.3. But if COVID-19 was transmitted through aerosols, wouldn't it be highly transmissible

Some Additional Slides on Risk Reduction

These slides provide additional details on layered risk reduction steps that were not covered in the overview presentation. I would be pleased to address any additional questions that the Education Committee or its staff has at a later time.

Layered Risk (Dose) Reduction Strategy (LRRS)

LRRS can lead to dose reduction > 95%

Reduce Source

"If there is a pile of manure in a space, do not try to remove the odor by ventilation. Remove the pile of manure." - Max von Pettenkofer (1858)

 $Dose_{inhal,i} = C_i (\#/L) \times B (L/min) \times t (min) \times f_{dep,i}$

Test & isolate

- Require masks (for all)
- De-densify (less occupants; innovate)
- Eliminate certain activities (singing, aerobics)
- Reduce speaking to extent possible

Reduce Source: Speaking

Asadi, S. et al. Scientific Reports, 9:2348 (2019) doi.org/10.1038/s41598-019-38808-z

• Breathing ≈ order of magnitude lower than average speaking

Possible Source: Resuspension of Particles

Ren, J. et al. Building & Environment (accepted)

Re-suspension as source: VCT < Carpet

Require Masks

$Dose_{inhal,i} = C_i (\#/L) \times B (L/min) \times t (min) \times f_{dep,i}$

- Universal mask wearing to capture infector
- Dual benefits
 - 30% (I) & 30% (R) = 51% dose reduction
 - 60% x 60% = 84% risk reduction

Problem = all masks off, e.g., lunch

- Outdoors if possible
- Quiet lunch (only teacher speaks)
- Rotating pods (teams) for mask off
- Mask down, eat, Mask up, next team up!

Cloth Mask Performance

- Performance = strong function of material(s) & fit
- Particle size dependent
- Nice resource

http://jv.colostate.edu/masktesting/

Drs. John Volcken & Christian L'Orange

• Select materials (includes data on breathability)

Distance from Source (everyone)

$Dose_{inhal,i} = C_i (\#/L) \times B (L/min) \times t (min) \times f_{dep,i}$

Horizontal distance traveled to settle 1.5 m At free-stream air speed of 5 cm/s

d _p (μm)	t (1.5 m)	x (m)
0.5	56 hr	10000
1	14 hr	2500
5	33 min	100
10	8 min	25
20	2 min	6
50	20 sec	1

Distancing?

- With masks
- Without masks
- Age / grades

50 -100 μ m particles can travel > 6 ft (jet)

Ventilate

$$Dose_{inhal,i} = C_i (\#/L) \times B (L/min) \times t (min) \times f_{dep,i}$$

- Best = outdoors
- Mechanical (controlled)
- Natural (design openings)
- Infiltration

https://www.nytimes.com/2020/07/17/ nyregion/coronavirus-nyc-schoolsreopening-outdoors.html

Ventilate

ASHRAE 62.1- 2019 Ventilation for Acceptable Indoor Air Quality (Pre-COVID)

5 L/s-person; 0.6 L/s-m²

If 24 students + 1 teacher in 60 m² classroom = $5 \times 25 + 0.6 \times 60 = 161$ L/s

161 L/s = 576 m³/hr; AER = 576 m³/hr / (60 m² x 2.8 m) = 3.4/hr

ASHRAE Position Document on Infectious Aerosols Approved by ASHRAE Board of Directors - April 14, 2020

The following modifications to building HVAC system operation should be considered:

- Increase outdoor air ventilation (disable demand-controlled ventilation and open outdoor air dampers to 100% as indoor and outdoor conditions permit).
- Additional recommendations on filtration, portable air cleaners, UVGI, T & RH, etc.

https://www.ashrae.org/file%20library/about/position%20documents/pd_infectiousaerosols_2020.pdf

Ventilate

Many schools under-ventilated or inappropriately ventilated

Absenteeism (Simons et al., Am. J. Public Health, 2010)

- Association: under-ventilation & absenteeism
- Strongest association: young students

Performance (Haverinen-Shaughnessy et al., Indoor Air, 2011)

- 100 southwestern schools/classrooms
- 87% w/ less ventilation than ASHRAE 62.1
- Each 1 L/s-student increase in ventilation:
 - 2.9% increase math; 2.7% read

Ventilation matters (COVID-19 or not)

Air Exchange Rates: Central Texas High Schools

- Permanent classrooms severely under-ventilated (Median < ½ ASHRAE 62.1)
- Generally higher ventilation in portable classrooms (but high variability)
- Portable classrooms directly connected to outdoors
- Portable classrooms more natural ventilation opportunities + infiltration

Carbon Dioxide as Surrogate

- Elevated CO₂ = inadequate ventilation
- Accumulation of pollutants, body odors
- Productivity decrements
- Increased absences (e.g., Shendell et al., Indoor Air, 2004)
 - Δ 1,000 ppm = 0.5-0.9% decrease in annual average daily attendance
- Elevated rebreathed fraction \implies RF = (CO_{2,in} CO_{2,out}) / CO_{2,breath}
- Greater probability of respiratory infections
- Lower CO₂ (or RF): lower occupancy; increased ventilation

CO₂: Cumulative Distributions

115 K-8 classrooms; all day sampling; two school districts

Median average RF = 0.025 (2.5%); Median peak RF = 0.044 (4.4%)

< 15% with average RF < 0.01; < 5% with peak RF < 0.01

Rebreathed Fraction

Median RF = 0.025 to 0.027 (2.5 to 2.7%)

Similar to previous K-8 results

Estimates: Probability of Infection

Rebreathed Fraction

Rudnick-Milton model w/ 1 infector (m = adjusted for masks = 64% dual effectiveness)

Quanta generation rate: 67/hr for influenza; 135/hr for SARS-CoV-2

Filter

$Dose_{inhal,i} = C_i (\#/L) \times B (L/min) \times t (min) \times f_{dep,i}$

"Improve central air and other HVAC filtration to MERV-13 or the highest level achievable." ASHRAE Position Document on Infectious Aerosols (2020)

- Theoretical
- Can be worse
- System problems?

Kowalski & Bahnfleth (2002)

https://www.researchgate.net/figure/Composite-of-all-MERV-filtermodels-based-on-initial-conditions fig3 237558312

Theory & Lab ≠ Practice

Courtesy of Dr. Atila Novoselac, UT Austin (not a MERV 13 or 14)

Important to inspect for by-pass

Portable Air Cleaner (PAC)

- Proven: HEPA-based portable air cleaner
- High Efficiency Particulate Air
- Key: Clean Air Delivery Rate (CADR)
- CADR = $\eta \times Q$
 - η = single pass removal fraction (-)
 - Q = volumetric flowrate (ft³/min)
- Example: $\eta = 0.5$; Q = 500 ft³/min
- CADR = 250 ft³/min

Shaughnessy, R.J., and Sextro, R.G., *J of Occupational* and *Environmental Hygiene*, 3: 169–181(2006)

Portable Air Cleaner (PAC)

- Equivalent air changes per hour = EqACH = CADR/V
- Example: $V = 600 \text{ ft}^2 \times 8 \text{ ft} = 4,800 \text{ ft}^3$
- CADR = 300 ft³/min
- EqACH = 300 ft³/min/4,800 ft³ = 0.0625/min (or x 60 = 3.8/hr)

$$C_i = \frac{E_i/\psi}{\lambda + CADR/\psi + k_{i}}$$

At steady-state

If $\lambda = 2/hr$ 2 + 3.8 = 5.8/hr 66% reduction Add to 64% masks = 88%!

Filter Microbiomes

- Filters have microbiomes (e.g., fungi growth on filter cake)
- Respiratory viruses have been found on filters
- Take precautions when changing filters (central or PAC)
- Do not agitate
- Mask / goggles
- Gloves / hand hygiene

• Bag it

Disinfect (Air & Surfaces)

Air: UVGI (can be very effective if done right)

Surfaces (wide range): residual, reaction by-products, worker exposure

Dissertation: Dr. Clive (Matt) Ernest, UT Austin

Make Use of Time

$Dose_{inhal,i} = C_i (\#/L) \times B (L/min) \times t (min) \times f_{dep,i}$

- Reduce continuous time indoors
- Reduce time w/ mask down at lunch
- Outdoor calm time after physical activity
- Classroom particle decay periods

Educate

Reduce source
Require masks indoors
Distance from source
Ventilate
Filter
Disinfect (air & surfaces)
Make Use of Time
Educate

- Entire school community
 - Admin, teachers, staff, students, parents
- Target modes of communication
 - People absorb differently
- English & Spanish
- Make use of existing tools explore & educate
 - Slides added to end of presentation

