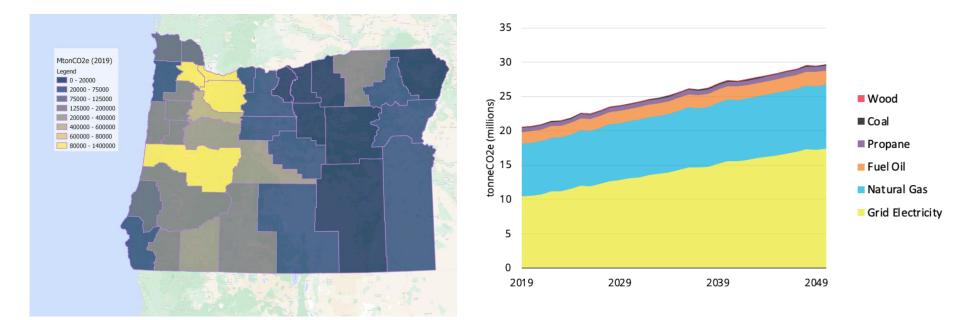
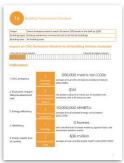

Modelling Wrap Up

Policy analysis


November 15, 2022



A Calibrated Model

Policies

1	Building performance standards	1a	16	10	1d	
			below 2035 levels in the BAP by 2035		35 levels in the BAP by 2035	
		Existing residential, commercial and multi-family buildings				
		All building sizes	Buildings ≥ 35,000 ft2	All building sizes	Buildings ≥ 35,000 ft2	
2	Promote, incentivize and or subsidize energy efficiency and heating/cooling	2a	2b	20	2d	
			y 2050, thermal energy requirements ed by 15%	100% of buildings are retrofitted by 2035, th reduced by 50%	ermal energy requirements	
		All building types				
		Buildings ≥ 50,000 ft2	Buildings ≥ 30,000 ft2	Buildings ≥ 50,000 ft2	Buildings ≥ 30,000 ft2	
3	Decarbonize institutional/public buildings	3a	3b			
		New buildings after 2035 are carbon neutral	New buildings after 2023 are carbon neutral			
		50% of buildings are retrofitted by 2045; thermal energy requirements reduced by 15%; plug load reduced by 15%	100% of buildings are retrofitted by 2035: thermal energy requirements reduced by 50%; Plug load reduced by 50%			
_						
1	Promote, incentivize, and/or subsidize heat pumps	4a	4b			
		80% of covered buildings have a heat pump installed by 2040	100% of buildings that are covered have a heat pump installed by 2035			
		New and existing resider	ntial and commercial buildings			
	Assess and disclose material-related emissions		5b	5c		
		Reduce embodied carbon from construction by 20% by 2030, compared to 2015	Reduce embodied carbon from construction by 60% by 2030, compared to 2015	Reduce embodied carbon from construction by 100% by 2050, compared to 2015		
		Residential and commercial buildings				
_	-					
	Enact energy-efficient building codes- Existing	6a	6b	60	6d	
		50% of existing buildings are retrofitted by 2050, thermal energy requirements reduced by 15%, plug load reduced by 15%		100% of existing buildings are retrofitted by 2035, thermal energy requirements reduced by 50%, plug load reduced by 50%		
		Existing residential and commercial buildings				
		Buildings ≥ 50,000 ft2	Buildings ≥ 30,000 ft2	Buildings ≥ 50,000 ft2	Buildings ≥ 30,000 ft2	
	Enact energy-efficient building codes- New	A 40% reduction in new building energy consumption from the 2006 Oregon codes		A 80% reduction in new building energy consumption from the 2006 Oregon codes		
		New residential and commercial buildings				
		Buildings ≥ 50,000 ft2	All buildings	Buildings ≥ 50,000 ft2	All buildings	

1a Building Performance Standard

Table and the lowest indeption

Indicators

1.CHG emissions

2 Economic impact Hecycle abarament cost

5 Energy afficiancy

4. Resileccy

5. Public health and air quelity

Target Orect emissions need to reach 5% below 2555 lawls in the SAP by 2055

Budding sizes All Auditing sizes

Palos will the highest reduction

-550,000 metric ton CO2e

nge arvive CHC errestors anded 2.3093

-\$141

-10.000.000 MMBTU

0 homes

-\$36 million

des Unit increase resiliency against heat, calif in weather mends

ecolori public health costs (2022-2060

5b Access and choicese material related emotions

Thy with the ineed reduction

Indicators

2. Rosnamic impact Recycle abstrament

3. Drivergy efficiency

5. Public health and air quality

A Desilvency

 Regel
 Reduce extended orders from construction by R2N by 2200, surgements 2218

 Rubbing types
 Reducer entropy in the service stability op

Any with the Taplace of

-3.360,000 metric ton CO2e

everage privati CHC emissions avoided emissions. (2023-2040)

of present value of a matrix ten of available DHS missions with a IN obscissionale

0 MMBTU

A constant and the second seco

0 homes

\$0 million

with vehicles that thermose resiliency against heat, cold and anywe weather exercise

annual avoided public health coars (2000 2000)

\$37

Target New Subdings offer 2000 are carbon related Reports 00% of Subdings on executional by 2000 thermal energy requirements reduced by 20%. Final and soluble the 20%

Trilly all the learning schemes

Indicators

1 CHG emissions

2. Economic impact Uncycle abatement

3 Charge efficiency

4. Resiliency

5. Public health and air quality

-180,000 metric ton CO2e

everage ensual GK2 emissions avoided emissions (2022-2050)

nut present value of a metric tax of availabl DHC emissions with a 3% discount rate

average annual socided energy consumption

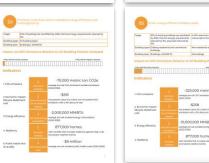
0 homes

-\$7 million

\$550

-7.000.000 MMBTU

0 homes


-\$7 million

oge annual avoided public health casts (2022 2010

7000.000 MMRTH

\$550



4. Desiliency

6b Enact energy-efficient training codes

Indicators

1 (2-4) emissions

2 Economic impact Decycle abatement cast

5. Energy officiency

A Reitlerey

Duilding spans Decision and commencial Seas residential and c

6h Drast energy efficient halt free codes

-\$258

-10.000.000 MMRTU

B77,000 homes

6759

-10,000,000 MMBTU

877,000 homes

average annual avoided energy consumption 2022-2050

Summary Charts

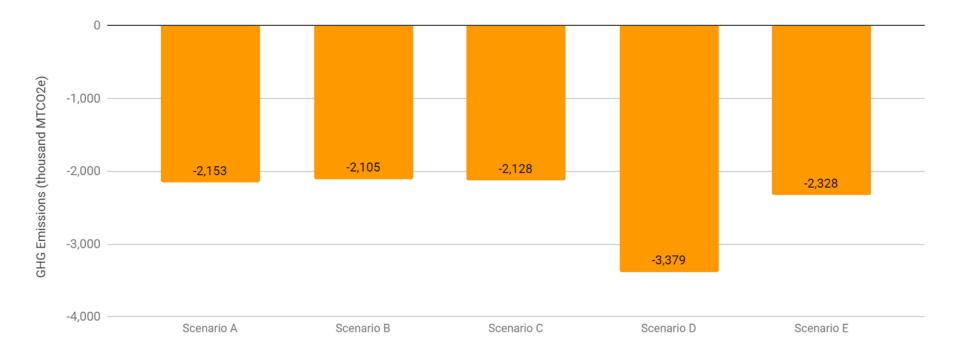
Table of Contents

1. Average annual GHG emissions avoided emissions (2022-2050)	2	
2. Average annual avoided energy consumption (2022-2050)	3	
3. Number of household retrofits that increase resiliency against heat, cold and severe weather events (2022-2050)	4	
4. Change in public health costs related to air quality (2022-2050)	5	
5. Change in household energy costs from 2022 to 2050	6	
6. Average annual capital investment (2022-2050)	7	
7. Cumulative net costs discounted at 3% (2022-2050)	8	
8. Lifecycle abatement cost, USD/MTCO2e (2022-2050)	9	
9. Average annual person years of employment (2022-2050)	10	
10. Avoided annual average damage as a result of climate change globally (2022-2050)	11	

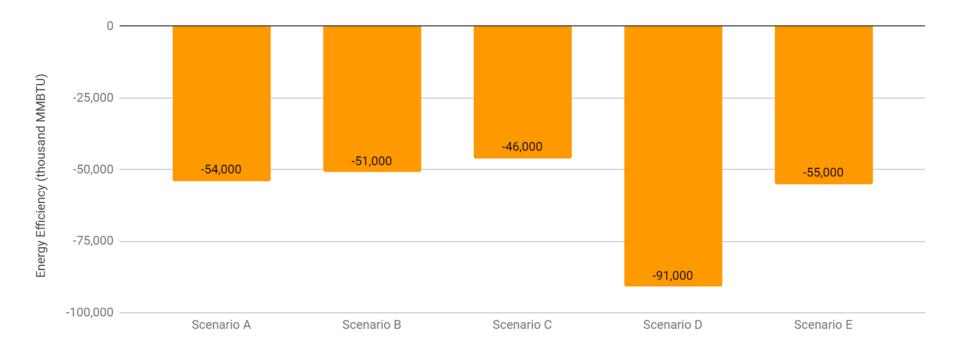
Response to Questions from the Task Force

Task Force members have raised questions with respect to the modelling approach. The response of the modelling team to each of the questions or comments is detailed in the following table.

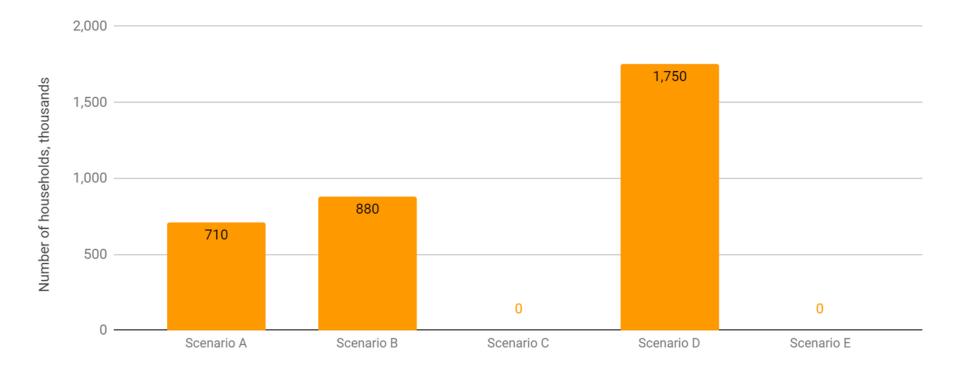
Comment/ Adjustment to the question from modelling approach		Details		
Nat is the definition of plug load"? dow will the eductions be accomplished?	No change	Plug loads are energy used by equipment that is usually alugged into an cublet. These sources vocal include equipment auch as appliances, computer equipment and AV equipment. Plug loads are not related to general building lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. Modern technology usually incorporates a variety of power modes with most electronic devices (computers, stereos, tvs) drawing power even when they are turned off. Some strategies involved in reducing plug load include • Upgrading equipment • Turning equipment off when not in use • Employing plug-load autorus • Fromoting beneficial occupant behaviour • The following source is a good resource for commercial buildings buildings as well.		
The use of the AVERT tool	No change	EDA's AVERT tool calculates the change in air pollutants as a result of electricity generation on an hourly basis. The change in outputs is calculated within the model used by the modelling team. While AVERT has a higher temporal resolution, it does not include the full energy system. Additionally, the AVERT tool doesn't project future emissions as the generation mix changes.		
The inclusion of Renewable Natural Gas (RNG)	RNG is included in Policy 1	RNC is included in Policy 1. Policy 1 is a Building Performance Standard that applies CHC targets, but does not specify how those CHC targets will be achieved The amount of RNC available to Oregon is based on the supply in 2040 in the US is assumed to be 3750 trillion BTUs. Power to gas/Methanation was excluded from this total. This total was shared out to Oregon according to the population of Oregon relative to the total US population, resulting in a total of 475 trillion BTUs of RNC available to Oregon by 2040. RNC was distributed to the residential building sector based on the share of natural gas left in this sector after the policy mechanism was implemented. "Best use"		

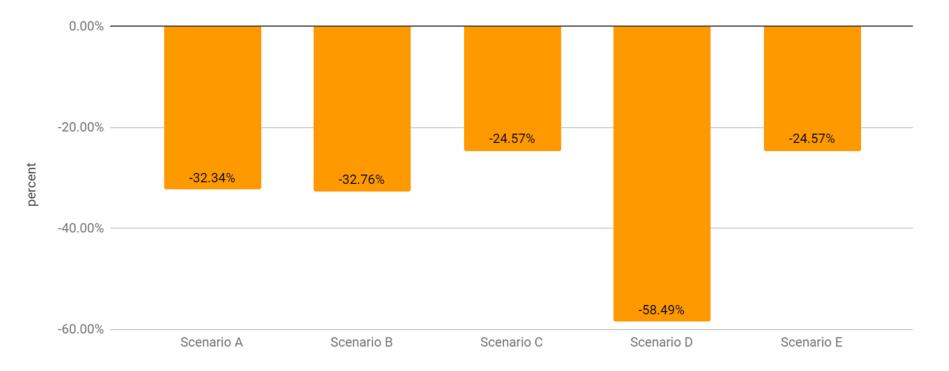

Integrated Scenarios

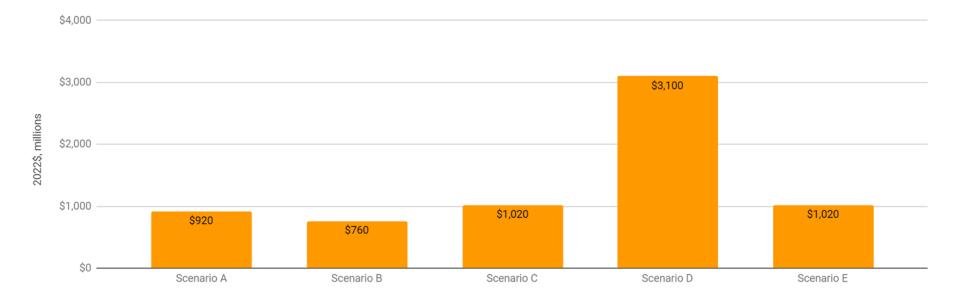
Integrated Scenarios

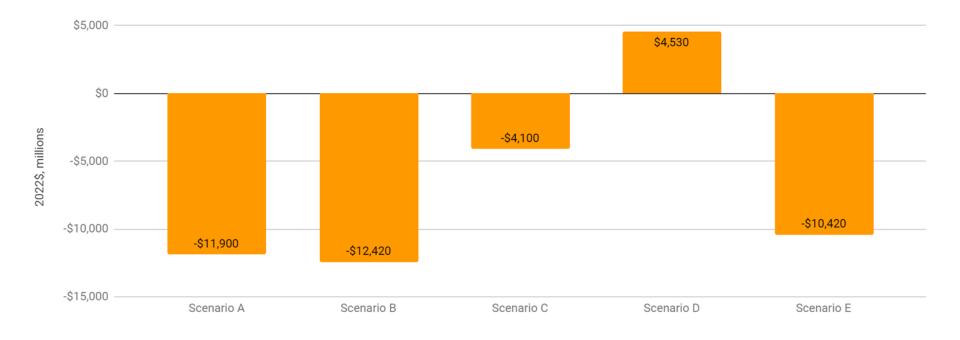

Α	В	C	D	E
Go slow, focus on large buildings	Medium efficiency, focus on large buildings	Medium GHG reductions, non-prescriptive	Maximum efficiency	Maximum GHG reductions, non- prescriptive
 Enact energy- efficient building codes 6a Promote, incentivize, and/or subsidize heat pumps 4a Decarbonise public buildings 3a Assess and disclose material-related emissions 5a* 	 Promote, incentivize and or subsidize energy efficiency and heating/cooling 2a Promote, incentivize, and/or subsidize heat pumps 4a Enact energy- efficient building codes 6a 	 Building Performance Standard 1d Decarbonise public buildings 3b Assess and disclose material- related emissions 5b* 	 Promote, incentivize and or subsidize energy efficiency and heating/cooling 2d Promote, incentivize, and/or subsidize heat pumps 4b Enact energy- efficient building codes 6d 	 Building Performance Standard 1c Decarbonise public buildings 3b Assess and disclose material-related emissions 5c*

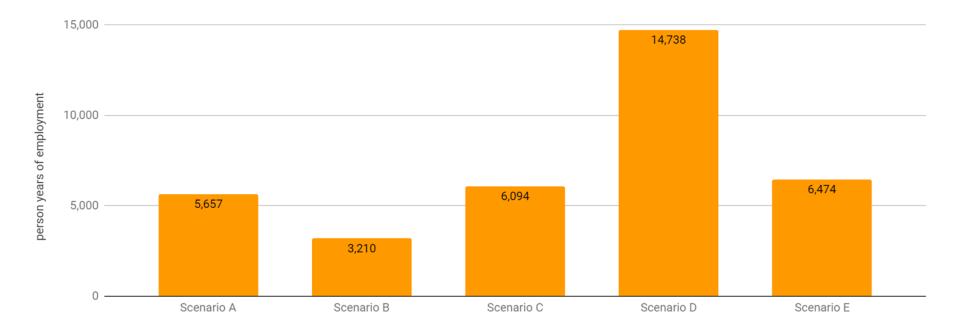
*Embodied emissions reductions require a different accounting approach

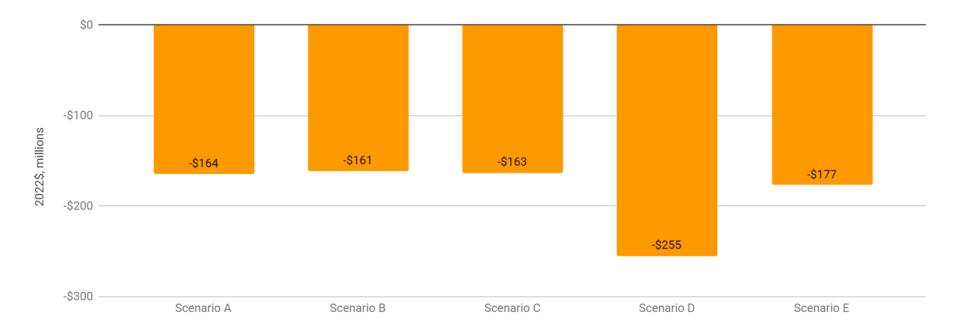

GHG Emissions


Avoided Energy Consumption

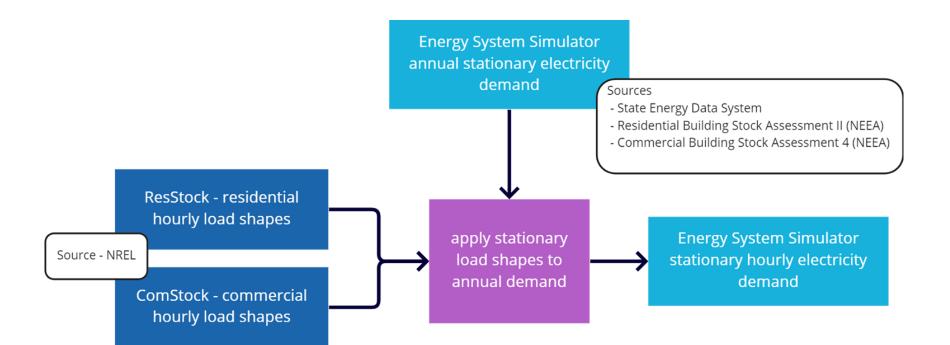

Resiliency


Change in Household Energy Costs

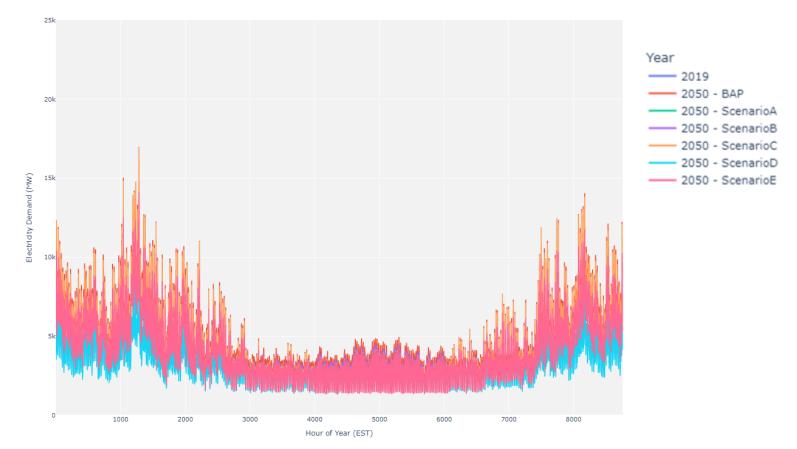

Average Annual Capital Costs


Net Costs/Savings

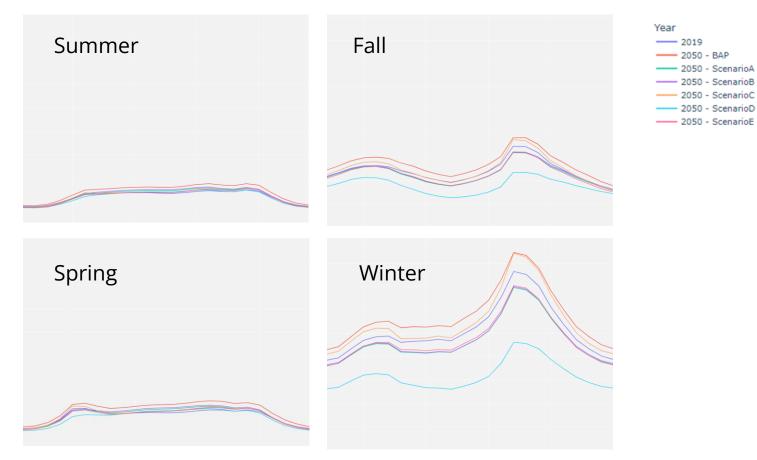
Employment

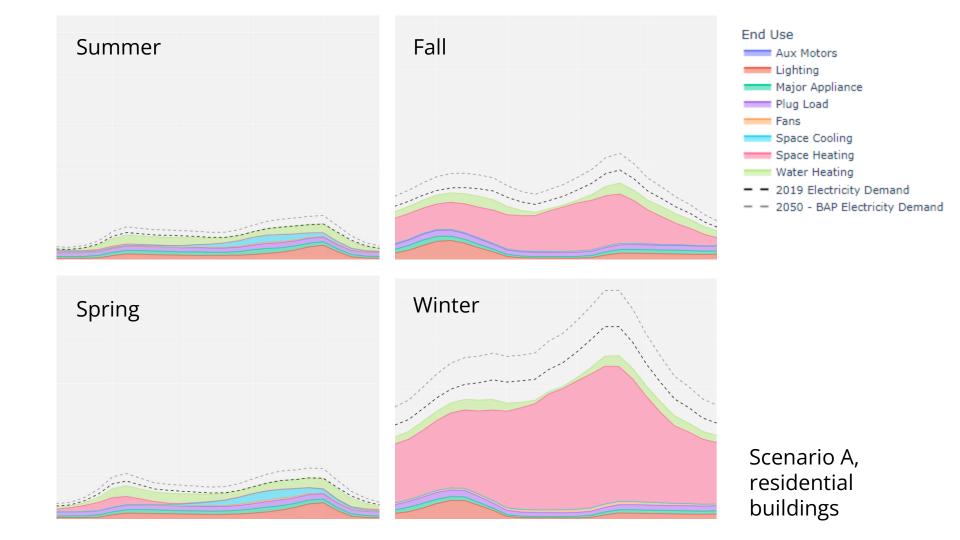


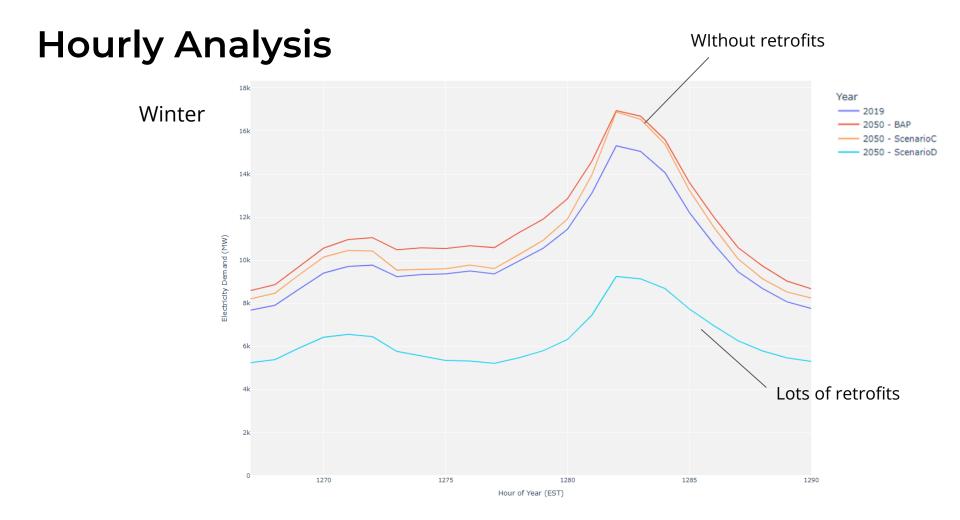
Avoided Climate Damage



Peak Analysis


Hourly Analysis




Electricity Demand Curves

Hourly Analysis

