Appendix 7. Financial Cost Catalog

Resilient Efficient Buildings Project Financial Assumptions

(October 05, 2022)

The tables below detail the financial assumptions and projections for the State of Oregon Resilient Efficient Buildings Project Project, which were applied to the actions/scenarios detailed in the Actions and Assumptions Table. Total costs/investments/savings were then calculated for each of the scenarios. These assumptions have been reviewed and approved by the State. Wherever possible, local data was used. For the most part, when costs are held steady over the projection period (2019-2050), this is because only data for 2019 was available.

Prepared for: State of Oregon Prepared by: Sustainability So

Sustainability Solutions Group

Specific Financial Analysis to be Undertaken

Financial modelling in the BAP and Policy Scenarios offers several points of analysis, including:

- The total incremental capital investment required in the Policy Scenarios, relative to the BAP Scenario;

- Total energy cost savings and operation and maintenance savings over a period of years in the Low-Carbon Scenarios, relative to the BAP Scenario:

- Average household energy savings per year;

- The average cost to reduce each tonne of GHG (abatement cost); and,
- The most cost-effective GHG reduction actions.

Financial Assumptions in this Workbook

This workbook contains draft financial assumptions to be incorporated into modelling the BAP Scenario and the Low-Carbon Scenarios. All financial variables are presented in the *Cost Intensity Data tab* within thematic tables. Unless otherwise indicated, the finacial assumption **DO NOT include inflation**.

Disclaimer

Reasonable skill, care and diligence has been exercised to prepare the financial assumptions in this workbook, but no guarantees or warranties are made regarding the accuracy or completeness of this information. This workbook, the information it contains, the information and basis on which it relies, and the associated factors are subject to changes that are beyond the control of the author. The information provided by others is believed to be accurate but has not been verified.

This workbook includes strategic-level estimates of capital investments and related revenues, energy savings, and avoided costs of carbon associated with emissions reduction actions to be modelled under the Resilient, Efficient Buildings Project. The intent of this analysis is to help inform project stakeholders about the potential costs and savings of actions prior to modelling the Policy Scenarios. It should not be relied upon for other purposes without verification. The authors do not accept responsibility for the use of this analysis for any purpose other than that stated above, and do not accept responsibility to any third party for the use, in whole or in part, of the contents of this document.

This analysis applies to the State of Oregon and cannot be applied to other jurisdictions without further analysis. Any use by the State of Oregon, its sub-consultants or any third party, or any reliance on or decisions based on this document, are the responsibility of the user or third party.

OREGON FINANCIAL DATA DICTIONARY

October, 2022

The tables below detail the financial assumptions and projections for the State of Oregon Resilient Efficient Buildings Project Project, which were applied to the actions/scenarios detailed in the Actions and Assumptions Table. Total costs/investments/savings were then calculated for each of the scenarios.

These assumptions have been reviewed and approved by the State. Wherever possible, local data was used. For the most part, when costs are held steady over the projection period (2019-2050), this is because only data for 2019 was available.

Buildings

New Buildings

New Building Construction	
Average of values for Portland [USD/s	qft]
Single	270
Double/Row	270
Apartment 1-4 storey	343
Apartment 5-14 storey	394
Apartment > 15 storeys	445
University	587
School	302
Retirement home	412
Hospital	743
Penal institution	672
Military	255
Transit station	511
Airport	894
Hotel	429
Greenhouse	148
Recreation	416
Community centre	416
Golf course	371
Museum	970
Retail	426
Vehicle and heavy equipment services	267
Restaurant	268
Commercial/Retail	426
Commercial	412
Warehouse	254
Religious institution	268
Energy utility	148
Fire station	605
Police station	605
Municipal	640
Surface infrastructure	240
Industrial	267
Agriculture	148
sourc	e: Cummings Ins
	https://ccorpin

the cost data for categories not included in the report cited above have been estimated by using the ratios of costs from other projects

Dwelling Operations & Maintenance Costs

Household spending intensity
USD / sqft*year 3.47

source: Siniavskaia, N. (2021). Operating Costs of Owning a Home. National Association of Home Builders - Economics and Housing Policy. https://www.nahb.org//media/04F57989FBC74C82BEF51C382C654E54.ashx

Residential Building Energy Imporvement Incremental Cost

kBtu/ft2	5	6	8	10	11	13	14	16	17	19
single	4.97	3.90	2.90	1.90	1.00	0.90	0.70	0.50	0.40	0.00
single_large	4.30	3.40	2.40	1.50	1.00	0.80	0.60	0.50	0.30	0.00
semi	5.85	4.70	3.60	2.50	1.40	1.10	0.90	0.70	0.40	0.00
town	3.00	1.10	0.60	0.50	0.50	0.40	0.30	0.20	0.20	0.00

source: extrapolated from Internal building energy model analysis of envelope improvement measures using CanmetENERGY's HTAP platform

Non-residential Building Energy Imporvement Incremental Cost

kBtu/ft2	5	6	8	10	11	13	14	16	17	19
office	4.0	3.4	2.8	2.2	1.6	1.0	0.0	0.0	0.0	0.0
primary_school	13.0	10.6	8.2	5.8	3.4	1.0	0.8	0.6	0.4	0.0
warehouse	10.0	8.2	6.4	4.6	2.8	1.0	0.8	0.6	0.4	0.0

retail	15.0	12.2	9.4	6.6	3.8	1.0	0.8	0.6	0.4	0.0
other	9.5	7.8	6.1	4.4	2.7	1.0	0.4	0.3	0.2	0.0
				A	1 11 A		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		

source: https://www.cagbc.org/news-resources/research-and-reports/making-the-case-for-zero-carbon-building/.p.18 note: more detailed extrapolations by region could be made in future if deemed necessary

Other was determined as being the mid point between highest and lowest category

Building Retrofits	s																															
Residential Building Envelo	ope Retrofits Incren	nental Cost																														
% energy reduction		0 5	10	1	15 20	25	30	35	40	45	50	55	60	65	70	75	80	85	90													
dwellUnit (USD / unit)		0 960	1,920	2,88		5,770	7,690	13,460	19,230	26,920	34,620	44,230	53,850	65,380	76,920	96,150	115,380	144,230	173,080													
apartmentUnit (USD / unit)		0 380	770			1,920	2,310	2,690	3,080	3,850	4,620	8,080	11,540	17,310	23,080	34,620	46,150	69,230	92,310													
	based on	above source an			ackgrounder-2016.pd anges	r <u>, Table 2</u>																										
Non-residential Building En % energy reduction		cremental Cost	10	1	15 20	25	30	35	40	45	50	55	60	65	70	75	80	85	90													
USD / sqft		0.0 0.5			1.5 2.0	3.0	7.5	12.5	20.0	23.8	27.5	31.3	35.0	38.8	42.5	46.3	50.0	65.0	80.0													
	source: https://ww		ocs/event/netze	eroforum-ba	ackgrounder-2016.pd	f <u>, Table 2</u>									i																	
Building Equipme	ent																															
Residential Heat Pump Cap	oital Costs. Installed	1																														
USD / heat pump		19 2020	2021	202	22 2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Air source	6,1		6,100			6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100	6,100
Natural Gas	14,7		14,700			14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700
Geothermal	20,5	50 20,550	20,550	20,55	50 20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550	20,550
	source: US EIA L	Ipdated buildings	sector applianc	es and equi	ipment costs and effi	ciencies, June	2018. page 29,	'high' values us	sed																							
	https://ww	vw.eia.gov/analys	is/studies/buildi	ings/equipco	osts/																											
Residential Heat Pump Main	ntenance Costs																															
USD / heat pump/year		19 2020	2021	202		2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Air source		2.5 72.5	72.5			72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5	72.5
Natural Gas		70 170	170		70 170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170
Geothermal		75 75	75		75 75 ipment costs and effi	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
Residential Water Heater Ca	https://ww	ww.eia.gov/analys				,																										
USD / unit	20	19 2020	2021	202	22 2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
40 Gallon natural gas-fired	1,93		1,925	1,92		1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925	1,925
50 Gallon Electric Resistance		50 850	850	85		850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	850
50 Gallon Heat Pump	2,0		2,075			2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075	2,075
		Ipdated buildings ww.eia.gov/analys			ipment costs and effi osts/	ciencies, June	2018 pages 51	-58																								
Residential Water Heater M																																
USD / unit/year		0 0	2021	202	22 2023 0 0	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
40 Gallon natural gas-fired 50 Gallon Electric Resistance		0 0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
50 Gallon Heat Pump	5	20 20	20		20 20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
30 Gallon Heat 1 drip	source: US FIA L	Indated buildings			ipment costs and effi	ciencies June	2018 pages 51		20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
		vw.eia.gov/analys					2010 pageo 01																									
Non Residential Heat Pump USD / heat pump	o Capital Costs																															
Air source (32 kbtu/hour)	5.1	00 Typical Capad	tty (32 kBtu/h)																													
Ground source (36 kbtu/hour)		50 Typical Capac																														
					ipment costs and effi	ciencies, June	2018, page 29	and 33																								
		vw.eia.gov/analys																														
Non Residential Heat Pump	O&M Costs																															
USD / heat pump/year																																
Air source		73 Typical Capac																														
Ground source		75 Typical Capac																														
					ipment costs and effi	ciencies, June	2018, page 29	and 33																								
	https://wv	vw.eia.gov/analys	s/studies/buildi	ngs/equipco	osts/																											

Non Residential	Water	Heater	Capital	Co
-----------------	-------	--------	---------	----

Non Residential Water	Heater Capital Costs
USD / water heater	
Electric	3,875 Commercial Electric Resistance Water Heaters, Input Capacity 18 kW
Natural gas	5,225 Commercial Gas Storage Water Heaters, Input Capacity 199 kBtu/h
	source: US EIA Updated buildings sector appliances and equipment costs and efficiencies, June 2018, page 120-135
	https://www.eia.gov/analysis/studies/buildings/equipcosts/

Non Residential Water Heater O&M Costs

USD / water heater/year		
Electric		50
Natural gas		270
	source: U	S EIA Updated buildings sector appliances and equipment costs and efficiencies, June 2018, page 120-135
	ht	ttps://www.eia.gov/analysis/studies/buildings/equipcosts/

Commercial Equipment Upgrade Capital Costs (Effectively an incremental cost)

Commercial Equipment Upgrade C	apital Costs (Effe	ctively an inc	remental cost)																
USD / MMBTU of energy saved	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Auxiliary equipment	22	22	23	24	24	25	26	27	28	30	31	32	34	35	36	38	39	40	42
Lighting	71	96	111	121	128	141	149	155	159	162	162	166	166	161	154	143	133	119	106
source:	auxiliary equipr	nent and lighti	ng, IESO 2019	Conservation A	Achievable Pote	ntial Study. App	endix 2 - Fored	ast Potential by	Measure. Sce	nario B (Uncons	strained Potenia	I). After Compe	tition Groups -	http://www.ieso	ca/2019-conse	rvation-achieva	ble-potential-st	лдұ	

These represent the capital costs associated with 1 GJ of savings in year 1. There will be no further capital costs for that investment in the remaining years of the project

Residential Equipment Upgrade Capital Costs (Effectively an incremental cost)

USD / MMBTU of energy saved	2020	2025	2030	2035	2040	2045	2050							
Lighting	31	28	27	26	24	23	22							
Major Appliances	337	320	304	289	274	261	248							
Plug Load	5	5	5	4	4	4	4							
source:	IESO 2019 Con	servation Ach	evable Potentia	al Study. Appen	ndix 2 - Forecasi	Potential by N	leasure. Scenari	B (Unconstrained F	Potenial). After C	ompetition Grou	ips - http://ww	v.ieso.ca/2019-c	conservation-achi	evable-pote
	Assumptions: N	leasure poten	ial divided by to	otal incentive (\$	i) in 2019 as sor	ne incentive ex	penditures sche	ne may distort the co	cost per energy sa	wed. 2018 dolla	rs.			
	Following years	costs are equ	al to 2019 cost	multiplied by a	learning factor	of 0.95 every 5	years.							
	Caveat: Incentiv	e cost include	s the incremen	tal capital cost	of measures plu	is the administi	ation costs for ru	nning an energy effic	ficiency incentives	program.				

Industrial Upgrades

inducariai opgradoo								
USD / MMBTU	2015	2020	2025	2030	2035	2040	2045	2050
Process Heat Improvements		11.08	4.22	2.27	1.15	1.15	1.15	1.15
Boiler upgrade		16.88	5.11	2.68	1.30	1.30	1.30	1.30
Process Heat Recovery (Gas)		14.28	5.11	2.43	0.89	0.89	0.89	0.89
Recommissioning		5.52	1.95	0.89	0.32	0.32	0.32	0.32
Improved Controls -Process Heating Gas		7.49	2.70	1.27	0.46	0.46	0.46	0.46

source: Achievable Potential 2019. Scenario B (Unconstrained Potenial). After Competition Groups - http://www.ieso.ca/2019-conservation-achievable-potential-study

http://www.ieso.ca/2019-conservation-achievable-potential-study assumptions: Measure potential for 2020, 2025, 2030, and 2035 divided by total incentive (\$). For projected years, assume same as 2035. 0.0373 GJ/m3 of NG Top 5 measures for total potential selected

FUEL COST	INTENSITIES																															
Electricity																																
USD / MMBTU	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2
Residential	42.15	42.15	46.80	45.17	44.75	44.49	45.40	46.93	47.27	47.62	47.87	48.61	49.51	49.74	50.02	50.30	50.42	50.50	50.52	50.44	50.37	50.44	50.51	50.69	50.71	50.79	50.95	51.12	51.12	51.15	51.11	5
Commercial	41.98	41.98	43.67	42.91	42.56	41.81	42.92	43.95	43.94	43.96	43.87	44.54	45.17	45.01	44.99	44.93	44.75	44.54	44.22	43.82	43.47	43.24	42.96	42.85	42.53	42.27	42.10	41.97	41.65	41.40	41.11	40
Industrial	29.32	29.32	29.29	27.60	26.96	26.41	27.58	27.92	27.90	27.87	27.80	28.38	28.70	28.59	28.55	28.49	28.34	28.17	27.93	27.66	27.44	27.32	27.19	27.11	26.94	26.83	26.77	26.68	26.51	26.42	26.33	26
	source: EIA. "Annual																															
	https://www.e	eia.gov/outlool	ks/aeo/data/brow	<u>/ser/#/?id=3-AE</u>	EO2021&cases=	<u>ref2021&sou</u>																										
Natural Gas																																
USD / MMBTU	2019		2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	20
Residential	13.61	13.61	13.67	13.48	12.82	12.15	11.64	11.16	11.24	11.36	11.48	13.74	13.80	14.22	14.32	14.38	14.44	14.48	14.50	14.56	14.58	14.61	14.65	14.68	14.71	14.74	14.79	14.83	14.89	14.96	15.06	15.
Commercial	9.48	9.48	9.46	9.24	9.17	9.02	9.01	8.96	9.03	9.13	9.22	11.21	11.16	11.49	11.56	11.60	11.65	11.67	11.68	11.73	11.74	11.76	11.78	11.80	11.83	11.85	11.89	11.91	11.96	12.02	12.10	12.
Industrial	4.22	4.22	4.91	4.92	4.74	4.54	4.64	4.77	4.86	4.99	5.11	5.05	5.04	5.12	5.21	5.25	5.27	5.29	5.27	5.32	5.31	5.31	5.31	5.31	5.32	5.33	5.36	5.37	5.41	5.48	5.57	5.
	source: EIA. "Annual																															
	https://www.e	eia.gov/outlool	ks/aeo/data/brow	/ser/#/?id=3-AE	O2021&cases=	ref2021&sou																										
Fuel Oil																																
USD / MMBTU	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	20
Residential	17.69	17.79	19.01	20.48	21.60	22.47	23.24	23.57	24.06	24.28	24.82	25.08	25.42	25.61	25.78	25.88	26.01	26.35	26.58	26.59	27.04	27.28	27.49	27.86	27.92	27.94	28.27	28.42	28.44	28.53	28.55	55
Commercial	19.09	19.21	19.47	20.34	20.50	20.42	20.25	20.55	21.01	21.23	23.74	23.97	24.55	24.69	24.82	24.93	25.01	25.29	25.51	25.51	25.92	26.15	26.31	26.59	26.62	26.65	26.97	27.12	27.15	27.28	27.26	47
Industrial	18.78		19.23	20.21	20.41	20.38	20.27	20.57	21.02	21.24	21.64	21.87	22.15	22.28	22.41	22.52	22.59	22.86	23.08	23.07	23.47	23.70	23.86	24.12	24.15	24.18	24.50	24.65	24.68	24.81	24.79	47
	source: EIA. "Annual																															
	https://www.eia.gov/out/tooks/aeo/data/browser#17/id=3-AEO2021&cases=ref2021&sourcekey=0																															
Renewable Natural Ga	s																															
USD / MMBTU	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	20
	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	
	source: EPA. An ove	rview of renew	vable natural gas	from biogas. 2	2020. p.28. Avera	age of mass sc	ale and small so	cale production	costs.																							
	https://www.e	epa.gov/sites/p	production/files/2	020-07/docum	ents/Imop_rng_c	locument.pdf																										
Hydrogen USD / kgH2	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	20
				4.05	3.83	3.60	3.38	3.15	2.93	2028	2029	2.25	2031	2032			2035	1.88	1.81	1.75	2039	1.63	1.56			-					1.06	2
Industrial	source: Bartlett, J. ar https://www.r	ff.org/publicat		Hydrogen in the arbonizing-hydr	e US Power and rogen-us-power-	Industrial Sect and-industrial-s	ors: Identifying sectors/	and Incentivizin	g Opportunities	to Lower Emis	sions. 2020. Fig	ure 9. Averages			2.06	2.00	1.94	1.88	1.81	1.75	1.69	1.63	1.56	1.50	1.44	1.38	1.31	1.25	1.19	1.13	1.0	.16

High end of production costs for renewables, assume energy density of H2 is 130 MJ / kg

IEA analysis finds that the cost of producing hydrogen from renewable electricity could fall 30% by 2030 as a result of declining costs of renewables and the scaling up of hydrogen production