

Climate change and Columbia River salmon

Dr. Laurie Weitkamp Northwest Fisheries Science Center Newport Research Station Newport, Oregon

Laurie.Weitkamp@NOAA .gov

Global temperatures are and will continue to increase

Global land and ocean temperature trends 1880-2019

Projected Global Temperatures

http://www.ncdc.noaa.gov/cag/

Wuebbles et al. 2017. 4th Natl. Climate Assessment, science2017.globalchange.gov The world's oceans have absorbed 90% of excess heat, warming at all depths

Cheng et al. 2020, Adv. Atmosph Sci 37:137-142

Direct effects of temperature on salmon

Salmon are 'cold blooded', therefore water temperature regulates their metabolic rate

Increasing water temperatures

will generally increase:

- metabolic rate
- physiological stress
- Egg incubation rates

And therefore decrease:

- disease resistance
- growth
- swim speed

Climate influences all parts of the salmon life cycle

Wainwright and Weitkamp 2013

In the Pacific Northwest By 2040 expect: 5.0

4.0

3.0

2.0

1.0

ç

%

B1

A1B

0000

1.6

80 000

1.9

8000

Air and stream temps to increase by 2°C.

Drier summers and wetter winters.

Ocean temps will rise by 1.2 to 2°C.

0.0 Winter Spring Summer Fall 2040s 30.0 Precipitation ۰ 20.0 10.0 800 888 8 8 5.1 2.3 0.0 0 00 000 -10.0 -11.2 -20.0 -30.0 A1B Winter Fall Spring Summer

Temperature •

1.9 1.7 2040s

2.7

Mote and Salathé 2010

More basins become rain- rather than snow -dominated.

Beechie et al. 2013, Schnorbus et al. 2014

(

More basins become rain- rather than snow -dominated.

More basins become rain- rather than snow -dominated.

This will result in:

1

 ↑ summer stream temperatures and ↓ summer flows at low-middle elevations (less snowpack)

More basins become rain- rather than snow -dominated.

This will result in:

- ↑ summer stream temperatures and ↓ summer flows at low-middle elevations (less snowpack)
- ↑ summer flows at high elevations (greater snowpack)

<u>Warmer winter temps</u> shorter incubation, higher fry growth

Warmer summer temps Increased thermal stress

<u>Higher fall/winter flows</u> Increased egg scour, juvenile displacement, access to spawning habitat

<u>Flow alteration</u> reduced summer rearing, migration timing mismatch

Beechie et al. 2013, Schnorbus et al. 2014

Summer 2015 Low river flow+ hot spring = high river temperatures & fish kills

2019 sockeye return were offspring of 2015 adults -Very low Columbia return -Lowest ever in Fraser River

Climate impacts to estuaries

Impacts

- Higher sea level Loss of tidal wetlands
 Increased salinity intrusion
- Higher temperatures Stress, disease, predation
- Ecosystem restructuring
 - Changes in species composition

Climate impacts to oceans

- Rising temperature Physiological stress, range shifts
- Regional impacts to productivity
 - -recent warming increasing Bering Sea productivity
 - -Big uncertainty about future of upwelling in California current
 - No impact or delayed
- Acidification

Changes in food supply (impact to salmon prey)

Combined effects
 Change in ecosystem structure
 Not clear how well it will support salmon

 Gulf of Alaska

 Warmer, stronger stratification =

 more productive ?

 Lalifornia Current

 Upwelling delayed,

 more intense?

Hot water across North Pacific since 2014 (the Blob) has resulted in:

- Species range extensions across NE Pacific
- Changes in productivity ($\uparrow \downarrow$)
- Changes in seasonal timing (e.g., spawning)
- Dramatic changes to food webs
- Record low salmon returns

Subtropical species in Oregon

Dramatic changes to base of food web

Commercial squid fishery in Oregon!

Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem

Lisa G. Crozier^{1*¶}, Michelle M. McClure^{1,2¶}, Tim Beechie^{1§}, Steven J. Bograd^{3¶}, David A. Boughton^{4§}, Mark Carr^{5§}, Thomas D. Cooney^{1§}, Jason B. Dunham^{6§}, Correigh M. Greene^{1§}, Melissa A. Haltuch¹, Elliott L. Hazen^{3¶}, Damon M. Holzer^{1&}, David D. Huff¹, Rachel C. Johnson^{4,7§}, Chris E. Jordan^{1§}, Isaac C. Kaplan^{1§}, Steven T. Lindley^{4§}, Nathan J. Mantua^{4§}, Peter B. Moyle^{8§}, James M. Myers^{1§}, Mark W. Nelson^{9¶^}, Brian C. Spence^{4§}, Laurie A. Weitkamp^{1§}, Thomas H. Williams^{4§}, Ellen Willis-Norton^{5§&}

¹ Northwest Fisheries Science Center

² Current Address: Pacific Marine Environmental Laboratory

³ Southwest Fisheries Science Center, Monterey, California, USA

⁴ Southwest Fisheries Science Center, Santa Cruz, California, USA

⁵ Department of Ecology and Evolutionary Biology, UC, Santa Cruz

⁶ U.S. Geological Survey, Forest & Rangeland Ecosystem Science Center

⁷ Center for Watershed Sciences, UC, Davis

⁸ Department of Wildlife, Fish and Conservation Biology, UC, Davis,

⁹ ERT, Inc. Under Contract to Office of Sustainable Fisheries, NMFS

What makes a salmon population vulnerable?

Freshwater exposure factors

45N 40N 35N 130W 125W 120W 115W

Marine Exposure Factors

Timing of upwelling

Rykaczewski et al 2015 Figure S5

Upwelling-favorable winds

Ocean currents

Checkley and Barth, 2009

Sea Level Rise

	2030	2050	2100
South of Cape Mendocino	.043 meters	.1261 meters	.42 - 1.67 meters
North of Cape Mendocino	04 - 23 meters	0348 meters	.10 - 1.43 meters
Table 1: Sea level rise projections for the West Coast of the U.S. relative to the year 2000			

NRC 2012

https://www.fisheries.noaa.gov/feature-story/west-coast-salmon-vulnerable-climate-change-some-show-resilience-shifting-environmen

Uncertainties

- Temperature rise depends on rate of emissions
- Ability of salmon to adapt to altered conditions
- Physical changes to ocean environments (model results of upwelling vary)
- Predicting future freshwater, estuarine, and marine food webs and their value to salmon¹

IPCC 2015

Conclusion

Bottom line

The earth is warming, its climate becoming more variable (e.g., more intense rainfall, extreme hot weather events)

 Expect impacts to cold-water Columbia River salmon to be largely negative

Primary impacts

- Increasing temperatures in all habitats
- In freshwater, snowpack changes will affect river flow
- Expect alterations to food webs throughout life cycle
- Productivity of marine habitats will likely change

Many uncertainties

- Reduce emissions of greenhouse gases
- Salmon's ability to adapt to future habitats

Distributions. First summer in the ocean: 3 patterns for Columbia River salmon

Pattern 1: Rapid northwards movement on shelf to Gulf of Alaska Which: Spring Chinook, chum, sockeye, some coho

Pattern 2: Remain in local waters

Which: Fall Chinook, some coho

Pattern 3: Move rapidly offshore

Which: Steelhead

Distributions. First summer in the ocean: 3 patterns for Columbia River salmon

Pattern 1: Rapid northwards movement on shelf to Gulf of Alaska Which: Spring Chinook, chum, sockeye, some coho

Pattern 2: Remain in local waters

Which: Fall Chinook, some coho

Pattern 3: Move rapidly offshore

Which: Steelhead

This is when most marine mortality is thought to occur

Ocean

Sea surface temperature anomalies in recent Julys

(shading = monthly sea surface temperature anomalies)

July 2015

July 2018

July 2016

July 2017

July 2019

Initial ocean migrations of Columbia River salmon in recent Julys

(shading = monthly sea surface temperature anomalies)

July 2015

July 2018

July 2016

July 2019

July 2017

Spring Chinook, sockeye Steelhead Fall Chinook, coho

1. Columbia River high seas distributions

Adults returning to the Columbia: 3 general migration patterns

Pattern 1: Southwards movement along shelf

Which: Fall Chinook, Chum (?), sockeye (?)

Pattern 2: Northwards along California & Oregon Coasts

Which: Coho

Pattern 3: Move rapidly onshore (or unknown)

Which: Steelhead, Spring Chinook

