

Cooperation and expertise for a sustainable future

Mitigating impacts of wind energy facilities on birdlife

Roel May

Wind energy in Norway

- Installed capacity of 2582 MW
- Annual electricity production of 8.2 TWh
- 42 Operational windpower plants
- 20 wind-power plants under construction
- •26 with consession

Smøla wind-power plant

- Wind-power plant with 68 2-2.3 MW wind turbines (2002-2005)
- 150 MW installed capacity, 356 GWh annual production
- Smøla is an archipelago with one main island (274 km²) and over 5000 islets and skerries (~2000 inhabitants)
 Circa 60 white-tailed eagle

territories

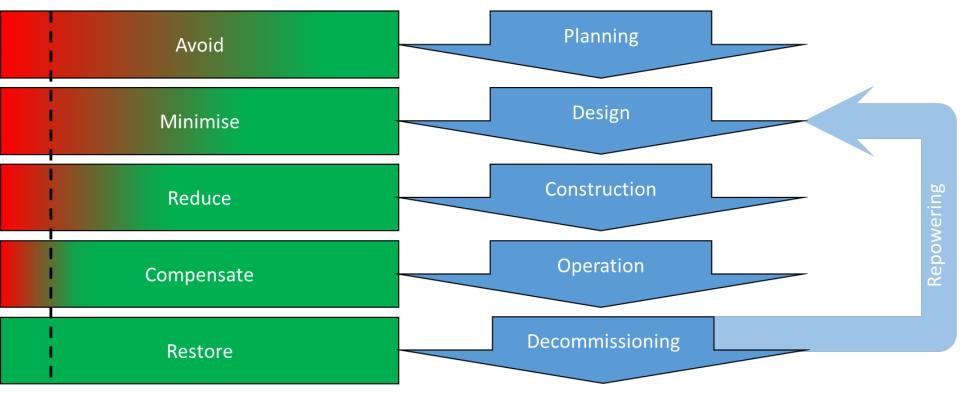
A decade of research on Smøla

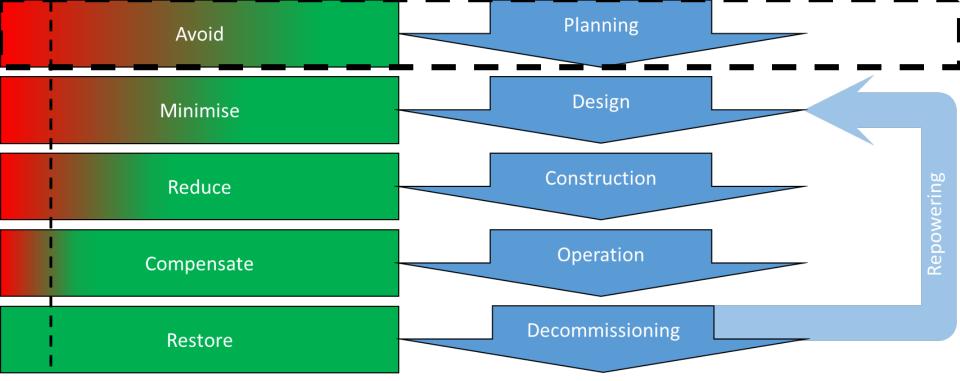
BirdWind (2006-2011)

 «Improve the information base and develop tools for the energy sector and authorities for optimal siting and conflict reduction of wind-power plants»

• INTACT (2013-2017)

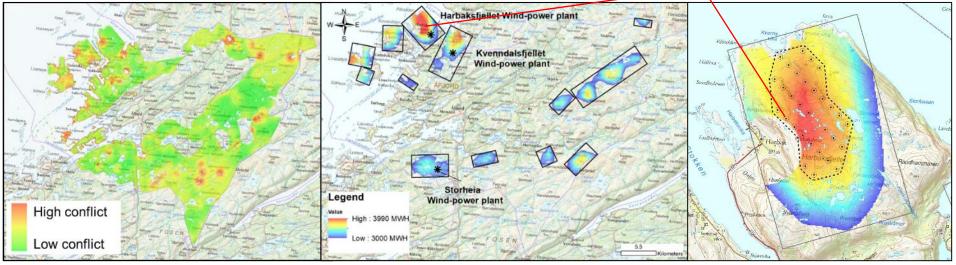
 «Test the efficacy of mitigation measures and develop tools to reduce the collision risk of birds with wind turbines»





MITIGATION OPTIONS

MITIGATION OPTIONS DECISION GATE



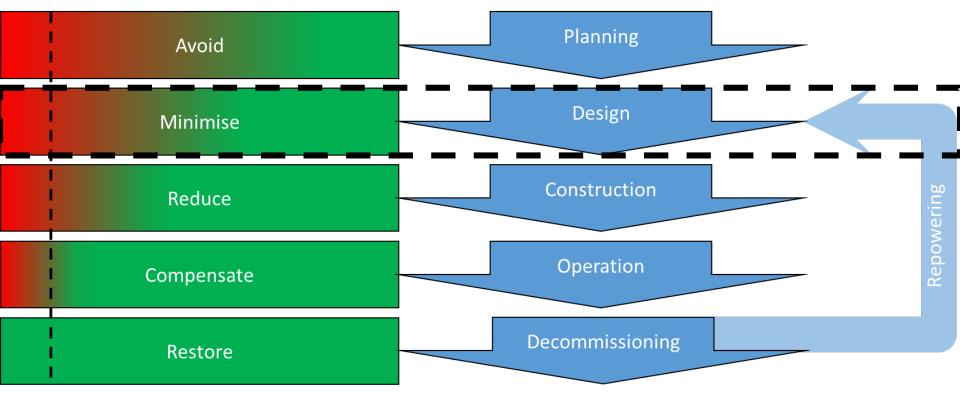
ConSite Wind Toolbox

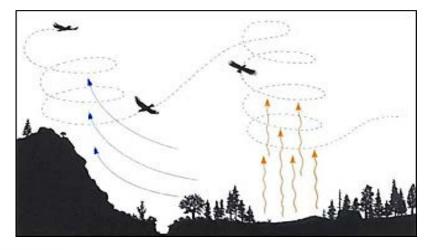
Spatial multi-criteria decision support tool for optimal siting of windpower plants based on ecological, societal and technological criteria

tern fy			
othy hore:	for: 🗞 Conflict rone datidies		
Locations	259 074 903 7 115 875 943 Meters		
nel i		Value	
И		305	
		0.334921	
	ources: Maximum setability	0.351201	
	ources: Head suitability	0.351201	
	to powerinas: Mnimum conflict	0.488702	
	to powerines: Maximum conflict	0.681689	
	to powerines: Mean conflict	0.551565	
		0.537115	
	to reads: Minimum conflict.	0.386635	
20 Distance to reack: Maximum conflict 20 Distance to reache Maximum/fiel		1	
		0.945275	
	shical variations Hinimum conflict	0.5	
	hicel veriation: Maximum conflict	0.99995	
20. Topographical variation: Mean conflict		0.891242	
	to outural bertrage: Minimum conflict	0.103344	
	to cultural heritage: Max conflict	0.474121	
	to cultural heritage: Mean conflict	0.342315	
	to cultural landacapea: Minimum conflict	0.001053	
	to cultural landscapes: Maximum conflict	0.006127	
	to cultural landscapes: Mean conflict	0.002893	
	tarbance: Minimum conflict	0.205814	
3C Veusi de	turbence: Haximum conflict	0.676145	
SC Vecal de	turbance: Mean conflict	0.393559	
30. Fragmen	tation of productive agricultural and forestry land: Minimum conflict	0	
30.Pragment	tation of productive agricultural and forestry land: Nasimum conflict	1	
30 Fragmen	tation of productive apricultural and forestry land: Nean conflict	0.029412	
44.Distance	to important sher for biodiversity: Hinimum conflict	0.000001	
A Downey	to important altes for biodiversity: Maximum conflict	0.500322	
44 Distance	to important sites for biodiversity: Hean conflict	0.122573	
45.Oktance	to coastal areas: Minimum conflict	9	
49.Oktance	to crastal areas: Maximum conflict	9.5	
41.04tence	to coastal areas: Hean conflict	0.000271	
C. Datama	to protected nature areas: Memory conflict	0.00000	
4C.Distance	to protected nature areas: Maximum conflict	0.000228	
	to protected nature areas: Near conflict	0.000279	
	to undeveloped nature areas: Minimum conflict	0	
	to undeveloped nature areas: Maximum conflict	0	
	to undeveloped nature areas: Mean conflict	8	

ConSite Wind Google Earth Engine

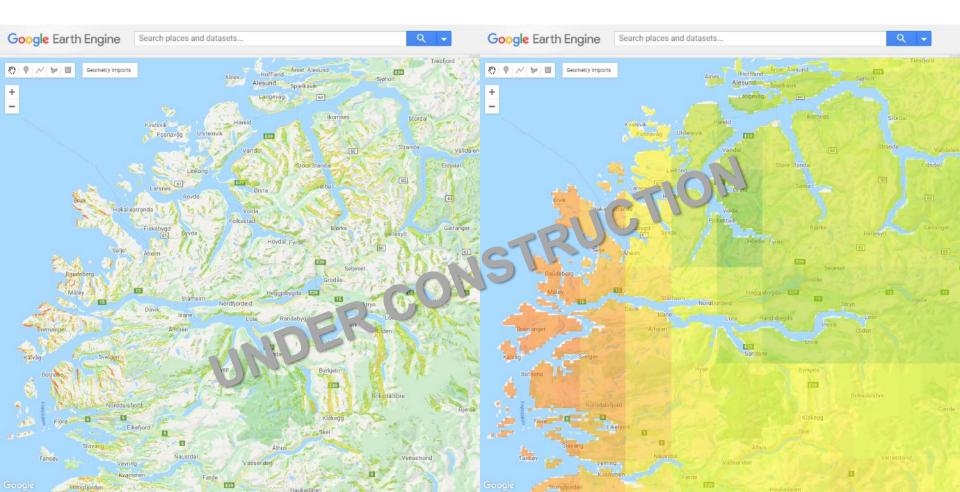
Earth Engine Apps Experimental

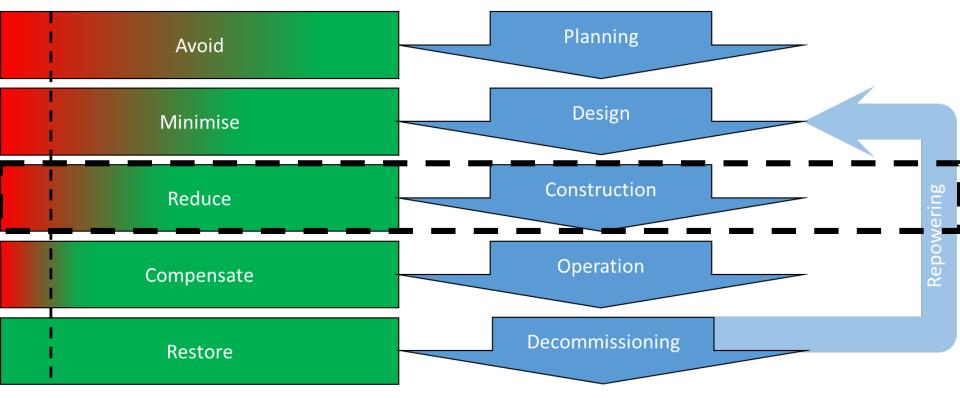

Q Search places

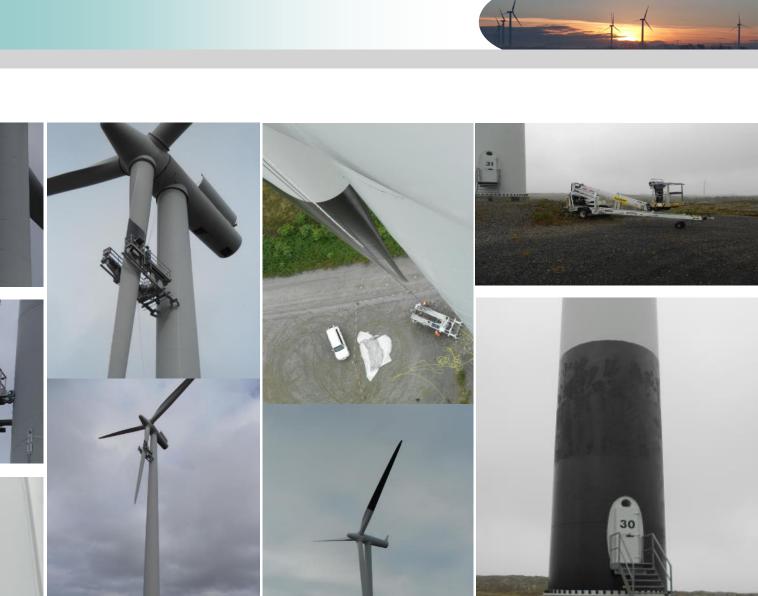

MITIGATION OPTIONS



Bird-friendly micro-siting of turbines


 GIS tool for identifying wind turbine locations with increased collision risk for soaring birds which are attracted to updrafts





MITIGATION OPTIONS

Painting of wind turbines

Rotor blade – one of three was painted black to reduce 'motion smear'

- Only minor changes in bird behaviour...
- ...but collision rates decreased by 71%

Turbine tower – lower 10m was painted
black to visually increase the horizon
Ptarmigan collision rates decreased by 53%...
...with highest effect during spring and autumn

Reminders for painting

- Visual effects in the landscape
- On-the-ground painting
- Exemption from regulatory color schemes
 - Civil Aviation Authorities
 - Licensing authority

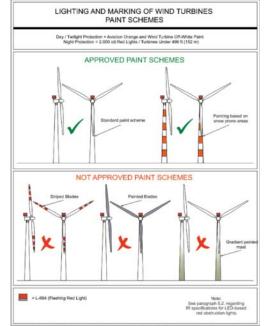
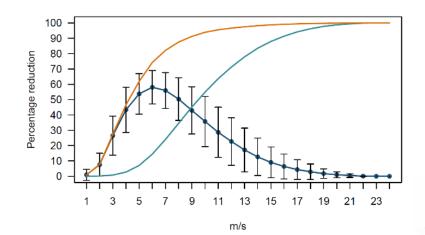


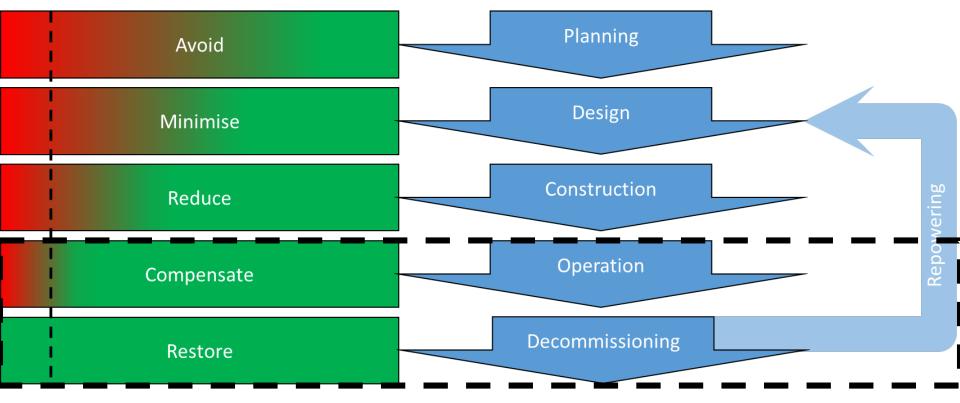
Figure A-28. Lighting and Marking of Wind Turbines – Paint Schemes

Pilot ultra-violet 'light fence'

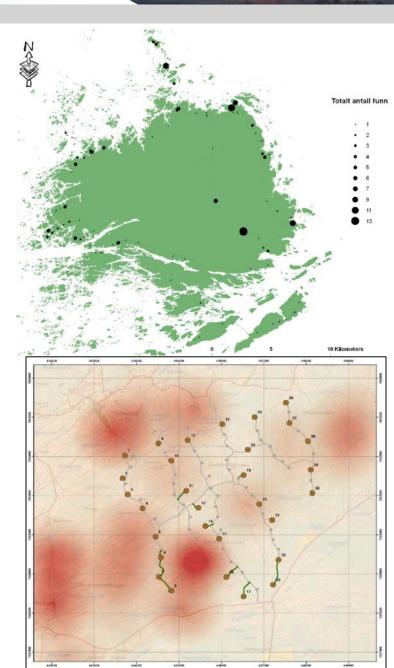
- Test the use of UV-light to deter birds from wind turbines in periods of reduced visual conditions (dusk/dawn, night, fog)
 - 12-27% lower bird activity compared to nights without lighting
 - Birds flew 7 m higher versus 40-50 m long rotor blades



Operational adjustments


- Adjustments of turbine cut-in speed to minimize collision risk per kWh
 - Minor seasonal effects
 - Wind speed large effect

MITIGATION OPTIONS



Unknown options?

 Potential to compensate for electrocution mortality instead of wind turbine collisions

 Potential for a 'repowering' of Smøla wind-power plant (30 5MW turbines)

With birds in its wake Painted wings, feathered blades Art of reduction

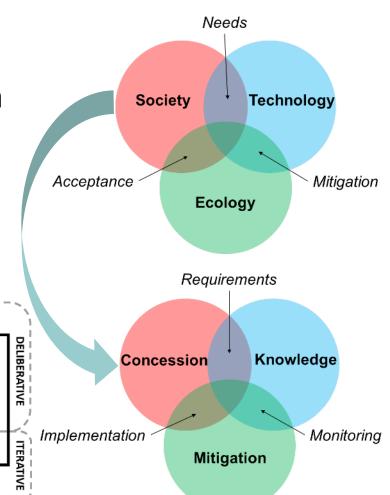
Engage beneficiaries

Evaluate

of development.

...of mitigation

When is implemention warranted?


Assess impact

Mitigate

 Wind energy with the least environmental impact per kWh requires balancing multiple interests, and acting upon this

Understand uncertainty

Monitor

Recommended reading

- May, R., Nygård, T., Falkdalen, U., Åström, J., Hamre, Ø., Stokke, B.G. 2020. Paint it black: Efficacy of increased wind-turbine rotor blade visibility to reduce avian fatalities. *Ecology & Evolution*. https://doi.org/10.1002/ece3.6592
- Stokke, B.G., Nygård, T., Falkdalen, U., Pedersen, H.C. & May, R. 2020. Effect of tower base painting on willow ptarmigan collision rates with wind turbines. *Ecology & Evolution* ece3.6307.
- Hanssen, F., May, R. & Nygård, T. 2020. High-Resolution Modeling of Uplift Landscapes can Inform Micrositing of Wind Turbines for Soaring Raptors. *Environmental Management* https://doi.org/10.1007/s00267-020-01318-0.
- May, R. 2019. The Mitigation of Impact and the Impact of Mitigation: An Ethical Perspective. Pp. 93-113, In: Bispo, R., Bernardino, J., Coelho, H., Lino Costa, J. (Eds.) *Wind Energy and Wildlife Impacts. Balancing Energy Sustainability with Wildlife Conservation.* Springer, Cham.
- Hanssen, F., May, R., van Dijk, J. & Rød, J.K. 2018. Spatial Multi-Criteria Decision Analysis Tool Suite for Consensus-Based Siting of Renewable Energy Structures. *Journal of Environmental Assessment Policy and Management* 1840003: 1-28.
- Laranjeiro, T., May, R. & Verones, F. 2018. Impacts of onshore wind energy production on birds and bats: recommendations for future life cycle impact assessment developments. *The International Journal of Life Cycle Assessment* 23: 2007-2023.
- May, R., Masden, E.A., Bennet, F. & Perron, M. 2018. Considerations for upscaling individual effects of wind energy development towards population-level impacts on wildlife. *Journal of Environmental Management* 230: 84-93.
- May, R., Åström, J., Hamre, Ø. & Dahl, E.L. 2017. Do birds in fight respond to (ultra)violet lighting? Avian Research 8: 33.
- May, R. 2017. Mitigation for birds. Pp. 124-145, In: Perrow, M. (ed.) *Wildlife and Wind Farms: Conflicts and Solutions. Volume 2. Onshore: Monitoring and Mitigation.* Pelagic Publishing, Exeter, UK.
- Arnett, E. & May, R. 2016. Mitigating wind energy impacts on wildlife: Approaches for multiple taxa. *Human-Wildlife Interactions* 10(1): 28-41.
- May, R., Reitan, O., Bevanger, K. Lorentsen, S.-H. & Nygård, T. 2015. Mitigating wind-turbine induced avian mortality: Sensory, aerodynamic and cognitive constraints and options. *Renewable and Sustainable Energy Reviews* 42:170-181.
- May, R.F. 2015. A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. *Biological Conservation* 190: 179-187.

