OREGON 2017 NONROAD DIESEL ENGINE INVENTORY STUDY FINDINGS

Joint Task Force on Supporting Businesses in Reducing Diesel Emissions

Presented by Rick Baker Eastern Research Group, Inc. (ERG)

JULY 16, 2020

OVERVIEW

- Project Team
- ☐ Project Scope
- Data Collection Approach
- Emissions Modeling
- Key Findings
- Validation of Results
- Conclusions/Recommendations

PROJECTTEAM

- ☐ Eastern Research Group
 - Lead Contractor

- ☐ Good Company
 - Public fleet survey lead

- Oak Leaf Environmental
 - Logging sector survey lead, technical support for validation of study findings

PROJECT SCOPE

- ☐ Authorized by House Bill 5006 in 2017
- Study conducted September 2018 April 2020
- ☐ Estimate nonroad diesel equipment emissions for Oregon
 - □ Replace current EPA MOVES-Nonroad model defaults
 - ☐ Key inputs # units, hp, hours/year, age distribution
 - ☐ Improve accuracy using bottom-up activity estimates
 - Provide updates for emission reporting requirements and air quality modeling
 - Provide basis for future year emission estimates
- Characterize equipment owners/operators
 - Identify targets for potential grant/subsidy programs (retrofit, repower/replacement)

PROJECT SCOPE

- □ Diesel nonroad equipment > 25 hp operating in Oregon during 2017
 - □ 65 equipment types (e.g. tractors, backhoes, portable generators)
 - Excludes locomotives, commercial marine vessels, aircraft
- ☐ Characterize activity and emissions (criteria, GHGs, toxics)
 - 2017 calendar year
 - County-level
 - ☐ Temporal resolution annual, typical summer weekday

- □ 3-pronged approach tailored to operator/industry categories
- □ Approach #1 Public Fleet Surveys
 - City, county, airports, marine ports, special districts, other agencies, schools/colleges/universities, municipal solid waste/material recovery
 - Known locations, easy to ID/contact
 - Attempt a full "census"

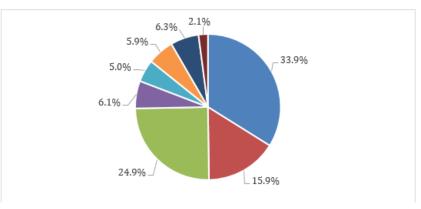
- □ Approach #2 Random Sample Surveys
 - Agriculture, logging, surface mining, crane/rigging companies
 - Numerous operators, difficult to generalize equipment use
 - Strong emphasis on data confidentiality
 - ☐ Active trade association support was key to encouraging participation and ensuring validity of results for each category

- □ Survey Details Approaches 1 and 2
 - Equipment type
 - Engine HP
 - Model year
 - Annual hours / temporal allocation
 - Location challenging for some equipment
 - Fuel consumption generally fleet-level

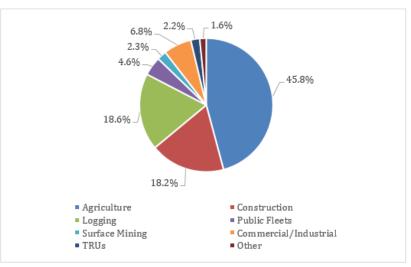
- □ Approach #3 Industry-Specific Profiles
 - ☐ Primarily construction sectors highway/road, commercial buildings, single family homes, utility work
 - Also well drilling and agricultural support services
 - □ Detailed project information available (e.g. # single family housing permits issued by county in 2017)
 - Develop standardized project task lists and equipment productivity profiles
 - Combine with available project details to estimate total activity

- □ Approach #3 − Data Collection Process
- Developed standardized task lists and equipment productivity estimates in consultation w/ AGC, other industry stakeholders
- □ Solicited subject matter expert input to account for
 - Oregon-specific practices and task frequencies
 - Equipment type preferences
 - Regional variations (e.g. blasting/crushing required for site prep in Central Oregon)

- □ Approach #3 Data Collection Process Continued
- Conservatively estimate equipment needs for each task element
- Link activity profiles with physical quantities such as
 - ☐ Bid-item quantities for highway projects ODOT
 - □ New single-family housing units Census Bureau permit records
 - Square feet of building installation Dodge Analytics
 - Well drilling depths OWRD
- ☐ Estimate hours of use by equipment type and hp for each project
- Combine with engine age distributions (based on a separate industry survey) to estimate emissions

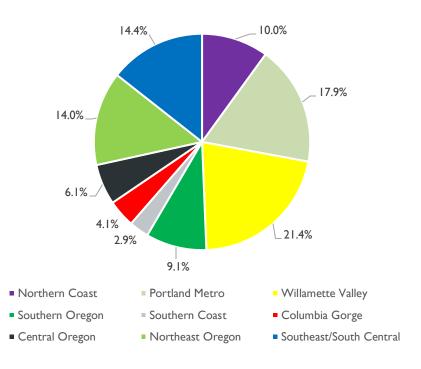

EMISSIONS MODELING

- ☐ Process survey and industry profile information (QA, gap-fill)
- Apply scaling factors and extrapolate activity to state level
- ☐ Allocate to county level by industry sector
- ☐ Adjust engine load factors where possible
- □ Run EPA MOVES-Nonroad model applying updated hours of use, hp, and model year distributions
- Compare estimates from the current study with EPA MOVES model defaults

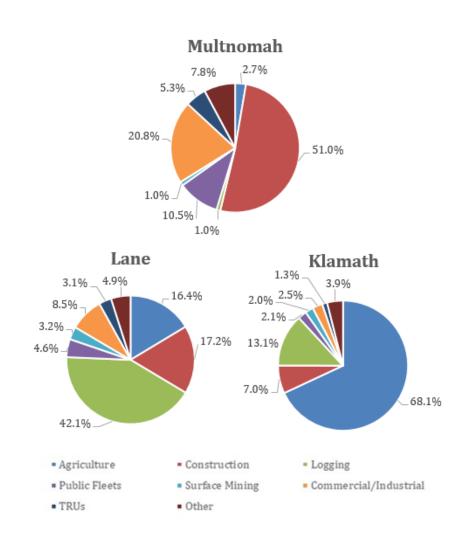


- Agriculture has the highest fuel consumption at the state level, followed by logging and construction
- Other sectors < 10%each
- Average agricultural tractor age (22 years) results in a relative increase in criteria pollutant emissions

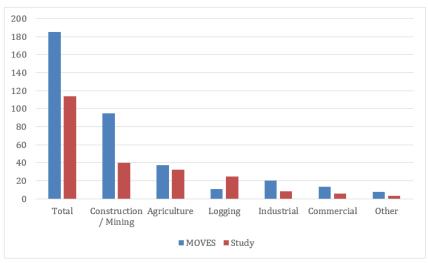
Statewide Annual Fuel Consumption by Sector 2017 Nonroad Diesel Equipment Study



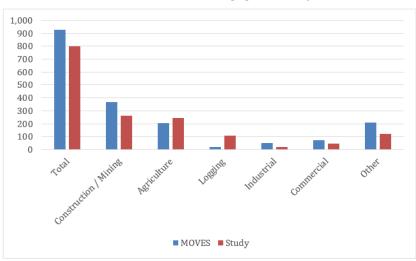
Statewide Annual PM_{2.5} Emissions by Sector 2017 Nonroad Diesel Equipment Study


- Geographic regions contribute various amounts to statewide emission totals
 - Portland Metro and Willamette Valley regions have the highest contributions to PM_{2.5} emissions, followed by Southeast/South Central and Northeast regions

2017 Statewide Annual PM_{2.5} Emissions by Region

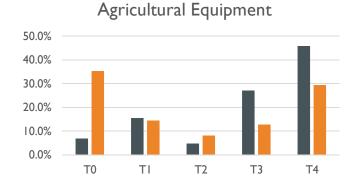

- The relative contributions to activity and emissions can vary substantially across counties
- Examples demonstrate prevalence of different industries
 - Multnomah –Construction
 - ☐ Lane Logging
 - Klamath –Agriculture

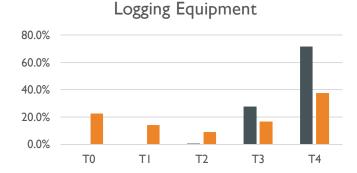
Annual PM_{2.5} Emissions by Sector – Selected Counties

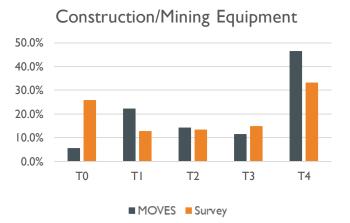


- Total statewide fuel consumption substantially lower than EPA defaults
- Total criteria pollutant emissions similar to EPA defaults
- Key differences across equipment categories
 - Construction/Mining
 - Logging
 - Agricultural

Statewide Annual Fuel Consumption (M Gallons) by Equipment Category 2017 Nonroad Diesel Equipment Study

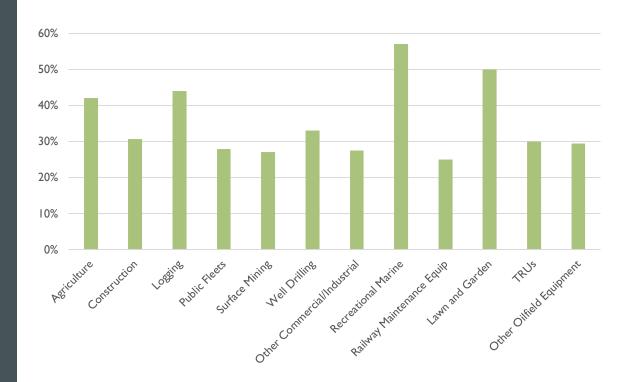


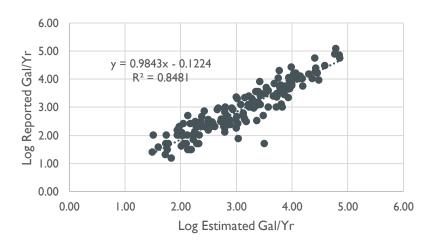

Statewide Annual PM_{2.5} Emissions (Tons) by Equipment Category 2017 Nonroad Diesel Equipment Study



- Engine tier level
 distributions have a
 substantial impact on
 emissions
- Survey data shown for key sectors
- MOVES tends to overestimate fraction of Tier 4s, underestimate Tier 0s
- Differences vary by industry sector

2017 Engine Tier Level Distributions – Key Sectors

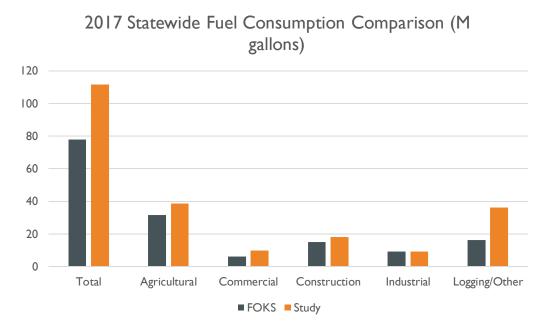



- Summer season fractions estimated by sector
- Most sectors have a third or more of their activity during summer
- Strongest summer peaks seen for agriculture, logging, boating and lawn & garden

Summer Season Activity and Emission Fractions

VALIDATION

- ☐ Validation ensures study results are consistent & reasonable
- ☐ Two types of validation
- ☐ I. Internal consistency checks
 - e.g. compare reported vs calculated fuel consumption
 - ☐ Example from Agriculture survey


VALIDATION

- ☐ II. External consistency checks
 - ☐ Compare study's fuel consumption and activity estimates at the sector level with independent data sources
 - □ EIA Fuel Oil and Kerosene Sales survey (FOKS)
 - □ Agricultural Census
 - ☐ Economic Census for Construction
 - □ Other sources e.g. FAA data for airport activity, USACOE data for marine ports

VALIDATION

☐ Comparison with FOKS nonroad diesel fuel sales estimates

- ☐ Study estimates somewhat higher fuel consumption than FOKS
 - ☐ Primary difference in the Logging/Other sector

CONCLUSIONS

☐ The study provides a comprehensive assessment of nonroad diesel equipment activity and emissions for Oregon

Oregon is just the third state to develop a bottom-up, statewide profile for these equipment

☐ The findings represent a substantial improvement to the activity and emission estimates used by the State compared with EPA's MOVES-Nonroad model

CONCLUSIONS

- Key findings
 - MOVES generally over-estimates activity/GHGs
 - □ Total CAP emission estimates generally consistent with MOVES at the state level, but findings shed light on county and region level distributions
 - Agriculture sector dominates at the state level, followed by logging and construction
 - MOVES substantially underestimates logging activity and emissions
 - MOVES substantially overestimates construction activity and emissions, but sector is still notable in certain counties

CONCLUSIONS

- ☐ Remaining Uncertainties
 - Certain emission estimates were based on limited data
 - Large landfill operations
 - ☐ Surface mining fuel efficiency factors (tons produced/gallon)
 - □ Lacking Oregon-specific operation information for Transportation Refrigeration Units (~6.3% of total gallons)
 - □ Significant uncertainty for railway maintenance equipment activity and emissions (~0.4% of total gallons)
 - Future year activity and emissions projections are needed
 - ☐ Determine which industries and regions are expect to grow rapidly, which equipment are turning over the fastest, etc.

SUPPLEMENTARY SLIDES

EMISSIONS MODELING PARAMETERS

☐ Fundamental emissions equation

Emissions_p/yr =
$$\sum$$
 (MYR) \sum (SCC) \sum (HP) Pop * Power * LF * A * EF_p

Where:

Pop = Number of engines

Power = Average hp (for specific hp group)

LF = Load factor (% of rated power)

A = Activity (hr/year)

 EF_p = Emissions for pollutant p (grams/bhp-hr) – function of model year

 \sum (SCC) = summation over each equipment type

 \sum (HP) = summation over each equipment hp group

 \sum (MYR) = summation over each equipment model year

