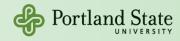


Liquefaction Mitigation Study using Bio-remediation

Arash Khosravifar, Ph.D., P.E.


Assistant Professor

Portland State University

Civil and Environmental Engineering Department

Oregon Seismic Safety Policy Advisory Commission (OSSPAC) meeting Salem, Oregon (July 9, 2019)

Research Team

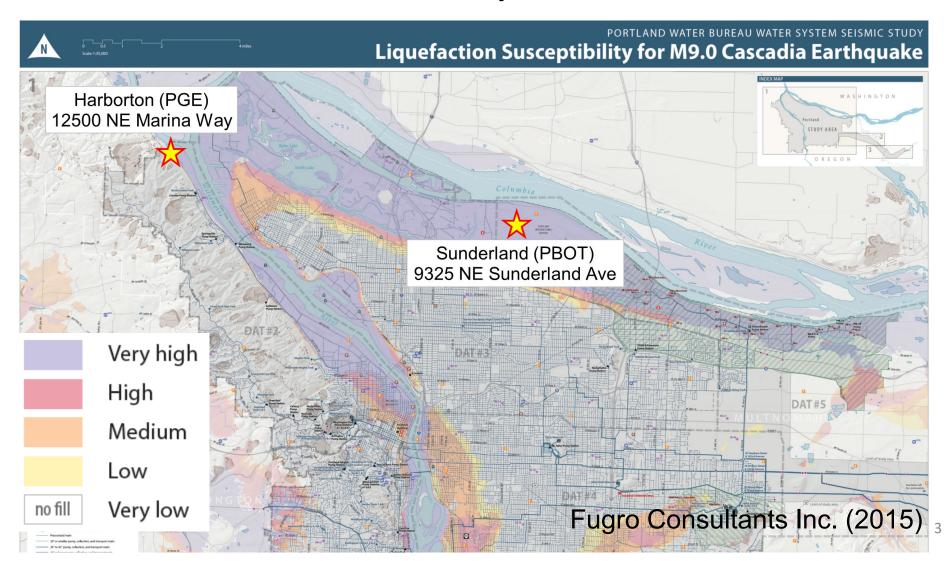
Dr. Arash Khosravifar, Assistant Professor

Dr. Diane Moug, Assistant Professor

Dr. Ed Kavazanjian, Professor

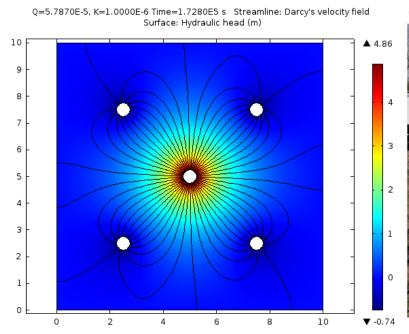
Dr. Leon van Paassen, Associate Professor

Dr. Ken Stokoe, Professor



Yumei Wang, Resilience Engineer, DOGAMI (Advisor)

Liquefaction Hazard in Portland

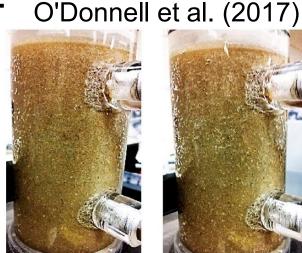

Two sites selected for this study

Ground Treatment Method

- Microbial Induced Desaturation and Precipitation (MIDP)
- Nutrients (treatment substrates) are injected to the ground from a central well and extracted from perimeter wells
- Denitrification results in nitrogen gas which desaturates the soil (unsaturated soil is not liquefiable)

Ground Treatment Method (MIDP)

- Advantages over other mitigation methods
 - Suitable for silts (e.g. Willamette Silt)
 - Non-invasive, suitable for existing structures sensitive to vibration (e.g. fuel tanks in CEI hub)
 - Nutrients are calcium nitrate (fertilizer) and calcium acetate (food grade), byproducts (nitrogen gas and carbon dioxide) are environmentally benign.



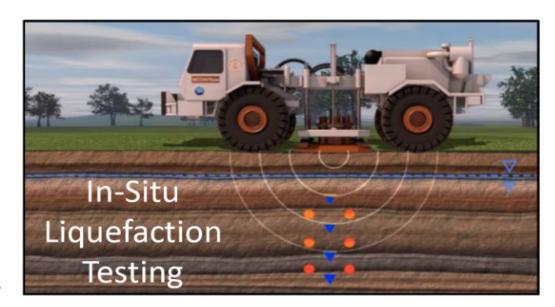
Ground Treatment Method (MIDP)

- Previous tests
 - Lab scale tests and centrifuge tests showed effectiveness
 - Field tests in Japan showed that the effect lasts for decades

Day 7

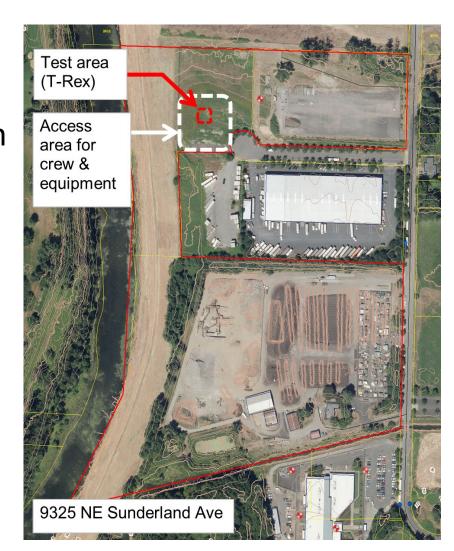
Day 17

Field tests are ongoing (Toronto ON, Richmond BC, and Portland)


> Pilot site Toronto Courtesy of Leon van Paassen

Scope of Tests in Portland

- Apply ground treatment (2 weeks of injection)
- Evaluate effectiveness using large mobile shaker (T-Rex) from the University of Texas NHERI equipment
- Monitor long-term effectiveness for 3 to 5 years using embedded sensors in the ground



NHERI@UTexas

Testing Schedule

- T-Rex at untreated site: Week of July 22
- Ground treatment: July through August
- T-Rex at treated site: Week of September 9
- Workshop (PSU/UT/ASU) on September 11, 2019, 1-5pm at PSU
- ➤ Field demo on September 12, 2019, 9-11am at Sunderland

Sponsors and Partners

- National Science Foundation
- Center for Bio-mediated and Bioinspired Geotechnics (CBBG)
- NHERI@UTexas
- City of Portland
- Portland General Electric
- ConeTec
- Condon-Johnson & Associates

