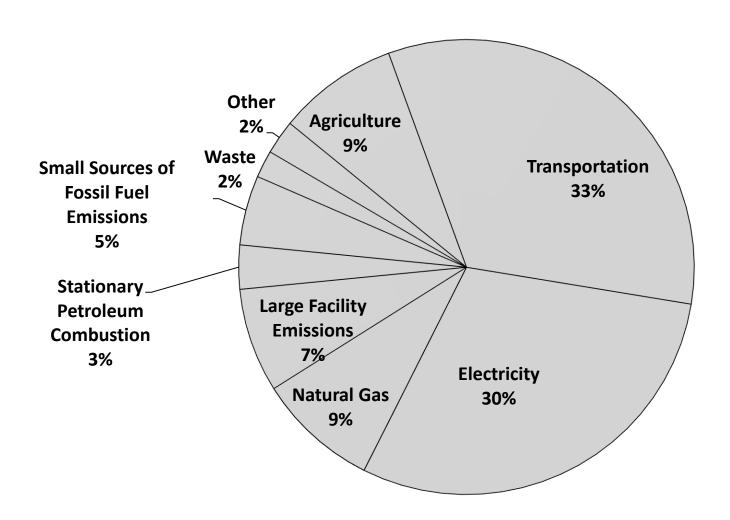

Greenhouse Gas Cap & Trade Program

Colin McConnaha, DEQ Senior Climate Policy Advisor Jason Eisdorfer, PUC Utility Program Director

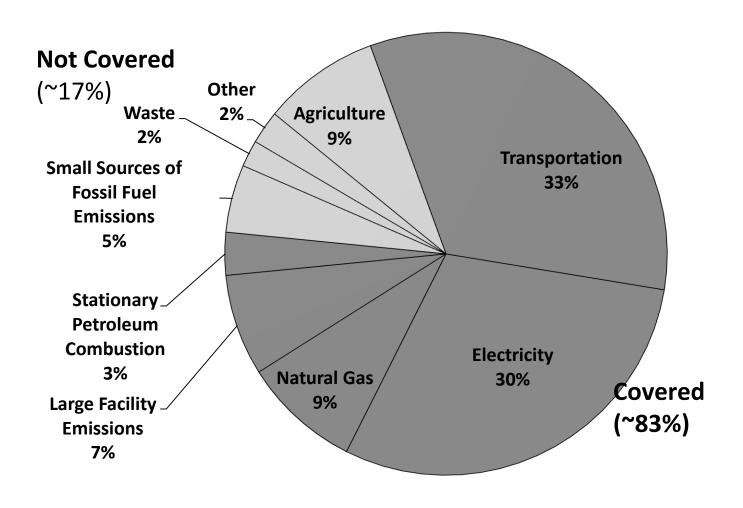
Elements of a cap & trade program

- Scope
- Stringency
- Allowance distribution
- Revenue
- Cost containment
- Offsets
- Program administration



Considerations for program design

- Effect on Oregon's GHG emissions
- Linking with other states or countries
- Interactions with existing state programs
- Impacts to businesses
- Rural communities & disadvantaged populations



Scope (covered emissions)

Scope (covered emissions)

Stringency

- Cap relative to emission sources
- Considerations:
 - Align to Oregon's GHG goals?
 - Adjust for proportion of state emissions covered?
 - Alignment of trajectory?
 - Compatibility for linkage

Allowance distribution

Auction

- Clear price signal to market
- Requires no state formula for distribution
- Generates revenue

Free

Reduces (certain) businesses' and customers' cost

Revenue

- Revenue from transportation may be restricted
- Remaining auction revenue could:
 - Benefit disadvantaged & rural communities
 - Minimize impacts to utility rates
 - Further reduce emissions
 - Other state priorities

Cost containment

- Banking
- Linkage
- Price floor
- Price ceiling
- Offsets

Program administration

- Allowances tracking system
- Compliance verification
- Auction platform
- Market monitor
- New staff
 - Program design and rulemaking
 - Stakeholder engagement
 - Expanded GHG reporting program

CaT and Existing IOU Regulation

- Ratemaking is an in-depth process to determine the prudence of utility investments. Through this process the Commission sets rates that are just and reasonable.
- In Integrated Resource Plans, utilities must study potential resource actions to meet customer needs in a least cost and least risk manner.
- In the IRP, utilities must analyze the impact of carbon dioxide emissions assuming a range of costs per ton and identify what resource action they would take to meet the state's greenhouse gas emission reduction goals.

CaT and Existing IOU Regulation

Relationships between existing policies and CaT

- Energy Efficiency: Energy Trust of Oregon acquires costeffective energy efficiency for the investor-owned utilities (SB 1149 and SB 838).
- Renewable Portfolio Standard: (SB 838) applies to all utilities in the state. For the state's largest IOUs the maximum compliance requirement is 50% in 2040 (SB 1547).
- Variety of electric vehicle programs: transportation electrification programs (SB 1547), connection to Clean Fuels Program, and required long-term EV planning.

CaT and Existing IOU Regulation

- Many policies that reduce carbon emissions could achieve much of the carbon emissions reductions for the electric IOUs that a cap and trade could.
- However, many of the policies are acting alone. There is not much connectivity between policies.
- A price on carbon would send a price signal to customers and serve as an emission reduction backstop.
- For example, cap and trade would create a greater connection between the transportation and electric sectors.

Depending on CaT Design:

- IOUs would continue to be subject to PUC rate regulation and planning requirements. Staying ahead of the emissions cap would be part of smart integrated planning and investment.
- The utility would become an actor in the allowance market sometimes buying and sometimes selling.
- Rates could go up as a price signal, but the customers annual costs could largely stay the same (either through free allowances or allowance revenue).

Questions?

Colin McConnaha, DEQ Senior Climate Policy Advisor Jason Eisdorfer, PUC Utility Program Director

