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ABSTRACT: In the United States, general aviation piston-driven aircraft
are now the largest source of lead emitted to the atmosphere. Elevated lead
concentrations impair children’s IQ and can lead to lower earnings
potentials. This study is the first assessment of the nationwide annual costs
of IQ losses from aircraft lead emissions. We develop a general aviation
emissions inventory for the continental United States and model its impact
on atmospheric concentrations using the community multi-scale air quality
model (CMAQ). We use these concentrations to quantify the impacts of
annual aviation lead emissions on the U.S. population using two methods:
through static estimates of cohort-wide IQ deficits and through dynamic
economy-wide effects using a computational general equilibrium model. We
also examine the sensitivity of these damage estimates to different
background lead concentrations, showing the impact of lead controls and
regulations on marginal costs. We find that aircraft-attributable lead contributes to $1.06 billion 2006 USD ($0.01−$11.6) in
annual damages from lifetime earnings reductions, and that dynamic economy-wide methods result in damage estimates that are
54% larger. Because the marginal costs of lead are dependent on background concentration, the costs of piston-driven aircraft
lead emissions are expected to increase over time as regulations on other emissions sources are tightened.

■ INTRODUCTION
Lead is a persistent toxic pollutant that impacts human health
and welfare through inhalation and ingestion pathways. Lead
emissions from general aviation (GA) piston-driven aircraft are
attributable to the addition of tetraethyl lead (TEL) for the
formation of aviation gasoline (avgas). GA refers to all civil
aviation excluding military and scheduled airline flights. GA
flights occur for a variety of purposes including flight
instruction, personal or business use, patrol and firefighting,
and charter use. The lead additive in avgas prevents piston-
driven engine knock, improves effective fuel octane, and
prevents valve seat recession. While lead used as an antiknock
agent in motor vehicles was the largest source of domestic
anthropogenic lead emissions from the 1960s through the
1980s, regulations limiting allowable lead concentrations in
gasoline in 1985 induced decreases in emissions in the 80s and
90s, and this use of lead was phased out by 1995 in the United
States.1,2 By 2008, piston-driven aircraft emissions accounted
for half of all U.S. atmospheric anthropogenic lead emissions,
and were the single largest source of lead emissions to the air.3

Human exposure to lead can occur through inhalation of
lead-containing particles, ingestion of contaminated soil or lead
paint, lead from private and public drinking water distribution
systems, and through skin absorption.4 Lead bioaccumulates in

human bones, blood, and soft tissue. Lead exposure leads to a
variety of deleterious health impacts including disruption of
neurological, renal, reproductive, and physical development
systems.5−7 There is sufficient evidence that even low levels of
blood lead are associated with neurological impacts in
children.6 Cognitive and neurodevelopmental effects of lead
include decrements in IQ tests, lower performance on
standardized testing, and decreased graduation rates.5,6 Other
cognitive and behavioral neurological effects include an increase
an attention-deficit behavior, conduct problems, memory loss,
and poor language performance.6−8

In 2006, the environmental nonprofit group Friends of the
Earth petitioned the U.S. EPA to regulate or to advance
research forming the basis of regulating leaded emissions from
GA aircraft. In April 2010, the EPA issued a notice of a
proposed rule, describing existing data and planned research
and requested comment and further information on the
subject.9 In 2013, the EPA released findings that lead levels
were above the National Ambient Air Quality Standards
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(NAAQS) at two airports. Meanwhile, the FAA has announced
its intention to certify and make available an unleaded
replacement fuel by 2018.10

Eliminating lead from automobile fuel, new residential paint,
and plumbing systems over the past several decades likely
contributed to significant economic benefits. IQ-related gains in
discounted lifetime earnings from reduced lead exposure due to
these regulations for a single year cohort of American children
have been estimated to be between $110 and $319 billion
relative to peak exposure.11 The potential nation-wide IQ-
related benefits of eliminating lead from aviation fuel have not
previously been quantified. Previous aviation studies have
focused on avgas’s contribution to elevated lead levels at
individual airports or regions, have excluded emissions from GA
cruise, and have not calculated monetized damages, focusing
instead on lead concentrations in the atmosphere, soil, or in the
blood of exposed children.3,12,13 In addition to decreasing
cohort-wide lifetime earnings, productivity losses from lead
related IQ deficits will affect economic output, but the
economic feedbacks of lead exposure have not been quantified.
Here, we estimate the costs of leaded aviation fuel on society
through IQ-related impacts of aviation lead emissions across
the United States.

■ MATERIALS AND METHODS
We developed temporally and spatially resolved aviation lead
inventories using piston-driven aircraft data for 2008 including
emissions from cruise phase, which have been excluded from
prior assessments of aviation-attributable lead concentrations
(which only included emissions during takeoffs and landings at
specific airports). We develop a model to calculate static costs
from lead-related IQ losses using concentration−response
functions from literature. We determine the marginal costs of
aviation lead for three cases by applying different background
concentrations of total suspended lead particulates. Finally, we
determine dynamic economy-wide costs associated with IQ
losses from lead emissions using a recursive-dynamic general
equilibrium model.
Lead Inventory and Emissions Modeling. The total

consumption of leaded avgas in the United States in 2008 was
248 million gallons.14 The most common formulation of avgas
supplied in the U.S. is “100 Low Lead” (100LL), which has a
maximum lead concentration of 2.12 gPb/gal. Limiting the
domain of the analysis to the continental United States, this
results in total aviation lead emissions of 539 short tons of lead
in 2008. Total lead emissions within the landing and takeoff
(LTO) cycle are provided for 2008 by the EPA National
Emissions Inventory for nearly 20 000 airports and airfields
resulting in 257 short tons of lead emitted in LTO;15 2.6% of
these emissions occur outside of the continental United States
and are excluded, and the NEI inventory assumes that 5% of
lead is retained in the engine, engine oil, or the exhaust system.
A nationwide seasonal distribution of the GA operations that
peaks in May (9.8% of operations) and reaches a minimum in
January (6.8% of operations) is applied in accordance with a
detailed study of the spatial and seasonal patterns of general
aviation.16 This seasonal pattern is similar to the site-specific
GA pattern used in a lead study at Santa Monica Airport;12

however, regional seasonality may be greater in some areas. We
apply a single-peak diurnal profile of operations with operations
beginning at 6 a.m., peaking at midday, and ending at 10 PM
that approximates the temporal profile of operations used in a
near-airport lead study.12 A local sensitivity study on lead

dispersion found that annual concentration levels were not
sensitive to choice of diurnal profile.3

The remaining lead is emitted during the cruise phase of
flight. Most GA flights are local (i.e., depart and arrive from the
same airport) or are of short-duration. Thus, for the latitudinal
and longitudinal distribution of emissions from GA flights,
cruise emissions are apportioned across each state in
accordance with the percentage of operations that originate
in that state according to the methodology of the EPA NEI
guidance.15 We develop a triangular characteristic altitudinal
distribution of piston-driven aircraft cruise emissions with a
mode of 3000 ft and a peak of 13 000 ft from a study of 71 GA
aircraft that cover a range of aircraft type, primary-use purpose,
and operational characteristics.17 These operational character-
istics are in line with altitudinal profiles of GA airplanes from
December 2007 and June 2008 radar data, which had a modal
peak in the 1200−3000 ft altitudinal range and decreasing
frequency of flights with increasing altitudinal band.18

Background emissions for all atmospheric emissions species
including aviation were developed from the U.S. EPA National
Emission Inventory for 2005.19 Total lead emissions from this
inventory were scaled to 55% of their initial values to account
for the removal of 2005 aviation lead emissions, which were
generated using an older EPA inventory methodology and not
distributed in a spatially consistent manner. While 2005
background emissions are used as a surrogate for 2008
background emissions, total anthropogenic lead emissions
decreased from 1.36 to 0.95 thousand tons per annum in the
National Emissions Inventory from 2005 to 2008, a difference
in emissions of less than 2% of total annual lead emissions at
their 1970s peak. The NEI emissions totals represent changes
both to actual emissions and to inventory methodologies;
therefore, actual emissions changes from 2005 to 2008 may
have be more or less than 0.41 thousand tons.20

We use the community multiscale air quality (CMAQ)
modeling system v4.7.1 at a resolution of 36 km × 36 km is
used to model aviation emission-attributable lead concen-
trations in the continental United States.24 CMAQ is a high-
resolution regional air quality model used by the EPA to
support regulatory impact assessment. CMAQ has been
developed for multipollutant and air toxic assessment. Aerosol
phase hazardous pollutants are tracked using the multipollutant
CMAQ model and, while chemically inert, undergo micro-
physical processes and deposition. Meteorological inputs are
provided using the Weather Research and Forecasting (WRF)
v3.3.1 model for the year 2005.21 Initial and boundary
conditions for all chemical species are obtained from three-
dimensional tropospheric chemistry simulations from the
Goddard Earth Observing System of the NASA Global
Modeling Assimilation Offices (GEOS-Chem).22,23 The fate
and transport of metals and air toxics have been modeled and
validated in using CMAQ using monitor data for several species
including lead.25 We compare our modeled concentrations to
monitor data from the United States Environmental Protection
Air Quality Data Mart following the methodology of the 2011
National Air Toxics Assessment (NATA).26

Emissions-to-IQ Loss Pathway. Population exposure to
lead is calculated by overlaying annual average surface
concentrations on census data stratified by age group provided
by Woods and Poole27 and previously used in aviation
environmental analyses.28 Lead in ambient air can contribute
to several exposure pathways, including direct inhalation, and
once the lead is deposited to the surfaceingestion with
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indoor or outdoor dust, soil, water, and food. Young children’s
exposure to ambient lead is predominantly through the
ingestion pathway, with lead-based paint ingestion representing
up to 70% of U.S. childhood lead exposure in the 2000s.29,30

Because of these multiple pathways, the relationship between
recent ambient lead (PbA) and blood lead (PbB) concen-
trations can be difficult to determine. Several studies use
historical data to develop regression models that estimate the
impact of changes in PbA measured in Total Suspended
Particulates (TSP) on children’s PbB, by controlling for factors
that could be predictors for nonrecent air pathways, like
geographic location, home age, and race/ethnicity.31−38 Based
on these studies, this work considers eight concentration-
response functions consisting of two functional forms for the
PbA (μg/m3 in TSP) to PbB (μg/dL) relationship. The first
relates ln(PbA) to ln(PbB) (ln-ln) according to ln (PbB) = β·ln
(PbA)+γ. The ln-ln model results in larger changes in PbB per
change in PbA at lower PbA concentrations. The second model
linearly relates PbA and PbB (linear) according to PbB = β·
PbA. For the linear functions, slope values are consistent with
ranges developed from case studies using the mechanistic
Integrated Exposure Uptake Biokinetic (IEUBK) model of the
PbA-PbB relationship.39

Concurrent blood lead level measured during childhood is
the best predictor of IQ when controlling for other social and
environmental variables.40,41 Four concentration-response
functions identified by the EPA are used to model the resulting
IQ decrements from changes in children’s concurrent PbB.39,42

These models are based on the pooled data set from the meta-
analysis of seven longitudinal cohort epidemiological studies,
adjusted for errors identified in an independent reanalysis.42,40

The four concentration−response functions take different
functional forms (log−linear with threshold, log−linear with
no threshold and linearization at low levels, two-piece linear
with slope change at 5 μg/dL, and two-piece linear with slope
change at 3.75 μg/dL) to capture uncertainty in the PbB-IQ
relationship. While the EPA includes a concentration−response
function with a lower threshold, there is no blood lead level
cutoff below which adverse health effects have not been
observed.43 Thus, while we present results for all four blood-to-
IQ concentration-response functions for comparison, results
where the use of a threshold results in no damage estimates are
excluded from summary statistics. Further details of the air-to-
blood and blood-to-IQ concentration-response functions are
given in the SI.
While the IQ-related impacts of lead are a function of

concentration in TSP, CMAQ modeled lead concentrations
have only been validated for PM10 and PM2.5.

25,26 TSP
measurements include particles up to 45 μm in diameter, and
therefore can be sensitive to even small concentrations of large
coarse particles from lead-containing particles from wind-
entrained dust, lead re-emissions, paint dust, and other sources.
Thus, for this study, we apply several background TSP
concentrations and calculate the aviation-attributable impact
as the difference between these background scenarios and the
modeled aviation-attributable lead concentrations. The annual
maximum 3-month average lead TSP for the United States has
decreased from 1.57 μg/m3 in 1980 to 0.13 μg/m3 in 2013, a
reduction of 94%, based on the average of 12 monitoring sites
used in the EPA’s Air Trends assessment.44 Because toxic metal
concentrations are expected to vary over small spatial
scales,12,45 and because lead concentrations have decreased
dramatically over a short time period, three cases for

background lead concentration are modeled: in Case 1,
background concentrations reflect average exposure levels of
lead TSP; in Case 2, background concentrations reflect
measured concentrations from a time before the completed
phase out of leaded gasoline; and in Case 3, background
concentrations reflect an additional 85% improvement in
average air concentration. The 3 Cases were chosen to provide
insight into the sensitivity of lead marginal costs given historical
data on lead concentrations and exposure levels.
In Case 1, the background annual lead in TSP is fixed at

0.011 μg/m3, consistent with the measured average lead TSP
geographically corresponding to NHANES-participating 1 year-
olds between 1999 and 2008.31 In Case 2, the background
annual lead in TSP is 0.4 μg/m3. This corresponds to the 90th
percentile value of the yearly maximum 3-month average lead
TSP from the EPA Air Trends study in 2005 and the mean
value for 1994 using 12 monitoring sites.44 This high
background case gives an indication of the damages attributable
to aviation lead if background concentrations were as high as
before the completion of the phase-out of leaded automobile
gasoline. In Case 3, the background concentration in TSP is set
as the annual PM10 lead concentration for each 36 km × 36 km
grid cell as the contributions from all sources as modeled in
CMAQ. This low background case represents an additional
85% reduction in the average background lead concentrations
and highlights the potential change in marginal costs of IQ-
related impacts of leaded avgas if background concentrations
continue to fall.

Economic Modeling. Following previous studies estimat-
ing the economic impacts of lead, we model the earnings
reductions associated with IQ loss due to children’s lead
exposure.11,46−48 The economic impacts of IQ loss are
calculated using two methods: a static estimate of the net
present value (NPV) of earnings losses for one cohort of 1 year
olds, and a dynamic estimate that uses cohort-wide earnings
losses as an input to labor productivity in a computable general
equilibrium model. Following a 1-year cohort is a useful
modeling simplification as it provides an indication of the
annual costs of aviation-attributable lead emissions as IQ loss
correlates best with concurrent blood lead level. These
estimates underestimate the total societal impacts of lead
exposure, however, as they do not include valuations of other
human health impacts, health treatment costs, and damage to
wildlife and ecosystem health.
For our static estimate, estimates of the percentage change in

lifetime earnings associated with an IQ point reduction are
taken from both the environmental health and labor economics
literature.11,47,49,50 These estimates take into account both the
direct impacts of IQ on wage, and indirect effects of IQ on
schooling, and range from 0.9% to 2.37% loss of lifetime
earnings per IQ point where productivity is assumed to increase
by 1% per annum and future earnings are discounted at 3%. We
calculate the NPV of lifetime earnings for a cohort of 1 year
olds using earnings data, stratified by age group, from the U.S.
Department of Labor’s Bureau of Labor Statistics and present
results in 2006 USD.
For our dynamic estimate, which accounts for the impacts of

children’s IQ-related earnings loss on the U.S. economy as a
whole, we use the U.S. Regional Energy and Environmental
Policy (USREP) model. USREP is a recursive-dynamic general
equilibrium model of the U.S. economy.51,52 USREP represents
utility-maximizing households and profit-maximizing firms as
rational economic agents, and finds the optimal, equilibrium
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condition of the economy (expressed through commodity
prices). Production and consumption depend on the relative
prices of different goods, services, and availability of production
factors like labor and capital. They are modeled as nested
constant elasticity of substitution functions. The availability of
labor is based on a household choice between labor and leisure.
USREP uses 2006 as a base year. Then, from 2010 onward,
equilibrium conditions are assessed at 5-year intervals.
USREP has been used to explore the dynamic, economy-

wide health-related economic effects of climate, energy, and air
quality policies including the influence of IQ deficits from
mercury exposure.51−55 Within the model, household labor and
leisure are treated as inputs to the good health of the U.S.
population. In the case of IQ loss, we consider only the effect of
IQ on total lifetime earnings (labor). As pollution increases,
more of these inputs are required to “produce” good health,
reducing economy-wide productivity by diverting these
resources from other sectors. Reduced household productivity
results in reduced consumption, with economy-wide ripple
effects that compound over time. We therefore express
economy-wide losses due to IQ-related effects as changes in
consumer welfare, measured as changes to household
consumption and leisure.

■ RESULTS
The contribution of aviation emissions to ambient lead
concentrations is calculated by first modeling particulate and
toxic species concentrations from all emission sources and then
by modeling concentrations for all sources except general
aviation. Aviation-induced lead concentrations are estimated as
the difference between the two model runs.
The model is validated against monitor data using the

approach of the 2011 NATA, using paired comparisons of
model concentrations to 22 annual lead monitors of lead PM10
observations in 2008.25 These 22 sites represent all monitors
which meet completeness guidelines for determining annual
average concentrations of lead PM10 in accordance with NATA
guidance and are not necessarily representative of the average
or range of concentrations of general population exposure. The
model, when simulating all anthropogenic lead emissions, has a
normalized mean bias of −60% and a normalized mean error of
62% as shown in the left panel of Figure 1. For comparison, a

study of 2001 emissions found that modeled lead values had an
average normalized mean bias of −48.10% for lead PM2.5 at
suburban monitoring stations in January,25 and CMAQ lead
concentrations had a normalized mean error of 154% for PM10
in the NATA.26

The right panel of Figure 1 shows the concentration of
aviation-attributable yearly average surface PM10 lead concen-
trations in μg/m3. Model results show that GA contributes to a
wide dispersion of low concentrations of fine particulate lead
emissions. For comparison, the median national total
atmospheric surface lead concentration experienced by 1−5
year olds for the same period, based on Air Quality System
monitoring data collected with National Health and Nutrition
Examination Survey (NHANES) 9908 study participants, is
estimated to be 0.011 μg/m3,30 and fine particulate lead
accounted for an average of between 0.0053 μg/m3 and
0.00723 μg/m3 of total atmospheric lead at U.S. monitoring
sites in July 2001 and January 2001, respectively.24 The model
shows local areas of high aviation lead contributions,
particularly the San Diego−Los Angeles Corridor, the
Washington−Boston Corridor, and the Dallas/Fort Worth
area. Further, the results indicate that aviation contributes to
surface lead concentration across the entire continental United
States. Because these aircraft-attributable concentrations are
small (on the order of 0.0005−0.002 μg/m3), these
contributions may be indistinguishable from background lead
concentrations in monitor data. The EPA estimates pristine
atmospheric lead concentration at 0.0005 μg/m3,12 and
detection limits and resolution for several monitors are of the
same order.25 However, because there is no known threshold
for lead impacts on health, these concentrations may contribute
to significant health and welfare impacts.
The static IQ-related benefits of controlling all aviation-

related lead emissions for Case 1, 0.011 μg/m3 background lead
TSP, are shown in Figure 2. Estimates for annual impacts range
from less than 0.01 billion USD to $11.3 billion (2006 USD).
Nine estimates return 0 values, all for the log−linear with cutoff
blood-to-IQ function. The mean and median benefit of aircraft
lead control are 0.95 and 0.51 billion USD per annum
respectively for all estimates and 1.06 and 0.60 billion USD per
annum respectively for all nonzero estimates. All three linear
air-to-blood concentration functions provide lower damage

Figure 1. Left panel: Comparison of simulated all-source anthropogenic emission PM10 lead concentrations to observed PM10 concentrations. Right
panel: Surface atmospheric PM10 lead concentrations attributable to aviation in the continental United States (μg/m3).
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estimates. These linear damage functions are expected to
provide conservatively lower damage estimates as they include
concentration-response functions developed from studies with
larger lead emissions and blood lead levels.
Case 2 and Case 3 provide insight into the impact of

decreasing background lead concentration and regional
variability on the IQ-related benefit from controlling lead
emissions. Case 2 estimates the impact of aviation lead
emissions with background concentrations of 0.40 μg/m3 lead
TSP. While this concentration is an order of magnitude higher
than that of Case 1, 0.40 μg/m3 was the mean annual maximum
3-month average lead concentration in the EPA’s Air Trends
analysis in 1999. The mean and median static aviation lead
societal cost for Case 2 are $0.09 and $0.04 billion USD
respectively. Whereas in Case 1 the linear air-to-blood
concentration-response functions provided the lowest cost
estimates, in Case 2 they provide higher cost estimates than
some ln-ln concentration-response function as background
concentrations are higher.
The static benefits of aviation lead control for all three cases

are shown in Figure 3. For Case 3, the case with average
background concentrations 85% lower than Case 1, the
estimated benefits of reducing lead increase to a median of
$5.2 billion USD and a mean of $7.9 billion USD. Case 3
produces an upper bound estimate of $51 billion USD, an order
of magnitude greater than the median value. As in Case 1, 9 of
the 96 cost estimates were $0 values, all for the concentration
response function that includes a cutoff value below 1 μg/dL.
In the dynamic case, we estimate the economy-wide impact

of children’s IQ-related earnings loss by taking the sum of
discounted differences between the economic output simulated
by USREP considering a cohort of one-year olds exposed to
aviation lead emissions and one where aviation lead emissions
are eliminated for that cohort. Results of USREP for aviation-
attributable lead are shown in Figure 4. The median Case 1
(background lead concentrations of 0.011 μg/m3, ln-ln PbA to
PbB relationship, dual-linear blood to IQ relationship with

inflection at 7.5, and IQ-loss to earnings of 2.37%/IQ point)
static estimate is used to explore the impact of economy-wide
costs. The economic impact of lead pollution for one childhood
cohort starts 15 years after initial emissions as they start to
enter the workforce and peaks 50 years later. Because impacts
are delayed, results are highly sensitive to discount rate. At a 3%
discount rate, dynamic economy-wide impacts of the median
Case 1 model are $926 million, an increase of 54% over the
static case. At 2% and 7% discount rates, the economy-wide
impacts are $1,460 million and $202 million, respectively. As
shown in Figure 4, at high discount rates, the maximum
damages occur when the cohort enters the workforce, but at
lower discount rates yearly damages from a single cohort
continue to increase for 40−60 years.

■ DISCUSSION
The mean and median Case 1 IQ loss costs of aviation lead
emissions are $1.06 and $0.6 billion for static losses and $1.63
and $0.93 billion for dynamic losses. Wolfe et al.56 estimate the
climate and noise damages attributable to U.S. airports at $5.25
billion and $0.63 billion respectively, while Yim et al.57 estimate
air quality damages from ozone and PM2.5 in North America as
$6.89 billion. Thus, the cost of General Aviation lead emissions
are of the same order of magnitude (albeit smaller) than

Figure 2. Static economic benefit of eliminating lead from avgas for
eight air-to-blood functions, four blood-to-IQ functions, and three
different IQ-to-earnings functions for an average background
concentration of 0.011 μg/m3.

Figure 3. U.S.-wide IQ-related benefit of aviation lead control,
measured as increase in lifetime earnings, for three background cases:
Case 1:0.011 μg/m3, Case 2:0.4 μg/m3, and Case 3: a spatially varying
case with mean concentration of 0.0017 μg/m3.

Figure 4. Present value of lead damages from USREP for a cohort of
one-year olds by decade for three discount rates compared to the static
IQ-loss damage estimates at a 3% discount rate.
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estimated costs of commercial aircraft climate and air quality,
but exceed the costs from commercial aircraft noise.
The range of static damage estimates from Case 1 alone

spans 2 orders of magnitude, even after limiting blood-to-IQ
relationships to functions without an impact cutoff at low
concentrations and only considering one discount rate. This
range represents the uncertainty along the exposure-to-impact
pathway. Treatment of earnings reduction potential alone
provides a factor of 3 differential in damage estimates. While
summary statistics presented here focus primarily on the mean
and median estimates, the range of damages indicates
opportunities for other interpretations. For example, a
precautionary approach may focus on the maximum damage
estimates ($11.3 billion). Further, expert judgment may be used
to down-select exposure-response functions depending on the
goal and scope of the analysis. For example, a previous study
found that if meta-analyses on lead damages were limited to
studies with blood lead levels <15 μg/dL, levels of the same
magnitude as those modeled in this study, the mean of the
marginal cost of lead would nearly double.46 Conversely,
considering additional social discount rates and uncertainty
from the general equilibrium modeling in the dynamic case
would increase the range of damage estimates.
Aviation full-flight emissions contribute to small but

impactful increases in lead exposures across the continental
United States. Because these contributions may be indistin-
guishable from background concentrations or lower than
monitor resolution detection limits, we use CMAQ to model
the contributions from all stages of GA flight to understand the
full impact of GA in the continental U.S. The spatial resolution
of CMAQ may lead to an overestimation of lead concentration,
exposure, and IQ loss damages further from an airport
boundary and an underestimation of lead concentration,
exposure and IQ loss damages nearer the airport. Lead
emissions are expected to decrease exponentially as a function
of distance from a point or area source. Carr et al.12 found that
near-airport lead concentration gradients were indistinguishable
from Los Angeles background concentrations at monitor
stations further than 900 m downwind from Santa Monica
Airport, but did not consider how aviation emissions, such as
those from cruise and itinerant operations, contribute to the
background. The under-/(over-) estimation of damages nearer
(further) from an airport will depend upon the spatial
distribution of the local population and the expected
contribution of other sources to background lead concen-
trations. These local airport impacts could be significant.
The results indicate that lead damages attributable to a single

source are highly sensitive to emissions from other sources.
Between Case 2 and Case 1, a 96% reduction in background
lead emissions equates to a 92% increase in median expected
societal cost of aviation lead. Case 2 suggests that, as emissions
from other sources have decreased dramatically, aviation’s
impact has become more significant. With logarithmic
concentration functions, improvements in overall air quality
are expected to lead to increases in the marginal costs of
additional emissions.58 Since 2005 the U.S. has continued to
tighten lead controls on lead emitters. In 2013, Doe Run Co.’s
smelter in Herculaneum, MO ceased primary lead smelting as
sulfur and lead emission stringencies increased. In addition,
there is significant regional variation in the background
concentration of lead in the U.S.
There are limitations to the lead modeling approach that may

influence the usefulness of results in some contexts. The lead

inventory is limited by the sources provided in the EPA
National Emissions Inventory. Research suggests that forest
fires and lead re-emissions from soil are increasingly important
sources of lead to the atmosphere.59,60 These sources, like
aviation, were an insignificant source of airborne lead during
the peak of leaded gasoline, but now may be a principal source
of emissions in certain regions. Further, leaded paint and paint
dust is expected to be the largest contributor to childhood lead
exposure, with exposure risk being spatially and demographi-
cally heterogeneous.30 This study does not account for this
heterogeneity. The CMAQ domain is also limited to the
continental United States, and therefore does not account for
over 8 tons of yearly aviation lead emissions in Alaska.
Earnings reductions related to IQ loss are only one effect of

lead exposure. High lead levels can lead to damages to the
nervous, circulatory, endocrine, and renal systems, which may
contribute to health costs and foregone wages.43 At high blood
lead levels, the Centers for Disease Control prescribes medical
intervention for heavy metal poisoning that can include oral or
intravenous chelation. Lower bound estimates of medical
treatment costs from all lead hazards are $11−$53 billion,
about 6%−20% of total lead damages.48 Childhood exposure to
lead has also been linked to criminal activity. The environ-
mental hypothesis for crime rates suggests that childhood
exposure to lead increases the likelihood of possessing low
behavior and cognition self-control and that low-self-control is
an important predictor of adolescent and adult criminal
behavior.61−63 The direct costs of lead-linked crimes in the
U.S. in 2006 are estimated at $1.8 billion, and indirect costs,
including treatment for psychological and physical damages
may contribute to an additional $11.6 billion in damages.47

The three cases in this study explore the sensitivity of results
to variability in background atmospheric concentrations, but
they do not consider the sensitivity of results to variability in
other sources of lead including leaded paint and soil lead or
sensitivity of results to changes in meteorology and climate.
The impact of aviation lead may be overestimated for
populations with significant nonatmospheric sources of lead,
but the future impact of aviation lead may be larger than
current estimates if controls on nonemission sources are
tightened or if the available housing stock with leaded paint
decreases. While historically aviation has represented a small
percentage of total anthropogenic lead emissions, aircraft
emissions will continue to represent a larger and larger
percentage of legacy emissions and may contribute to
significant soil concentrations and therefore lead re-emissions
near an airport with a high concentration of GA traffic.
Combining full-flight emissions and transport with local
dispersion modeling, utilizing higher spatial resolution model-
ing of population exposure, and incorporating historical
emissions of aviation lead in conjunction with higher-fidelity
inventories of anthropogenic, natural, and re-emission sources
are important areas of future work that can be used to refine the
damage estimates provided in this study. Ref 17.
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