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resources with useless tasks that keep it busy; if the web server becomes too busy, it may be unable to
respond to connections from legitimate users. We will discuss both categories.

In a network flooding attack, the adversary sends huge volumes of data in the direction of the victim,
saturating the victim's network connection and making it impossible for legitimate users to contact the
victim. SERVE's websites are at risk for this kind of attack; if their network connection is overwhelmed
by a denial-of-service attack, then eligible voters will not be able to vote using SERVE,

As a rule of thumb, the robustness of a website against network flooding attacks is determined largely by
the network capacity available to that website. For instance, a website with a 1 Gbps link to the Internet
would be hard-pressed to withstand a 1 Gbps DDoS attack. Large e-commerce sites typically have a 10
Gbps link at most. In comparison, researchers have observed DDoS attacks with peak traffic rates in excess
of 150 Gbps [MVS01,MPSSSWO03]. It seems unlikely to us that SERVE could withstand such a high-
volume DDoS attack.

In the second category of denial-of-service attack, the adversary sends many valid-looking requests to the
victim in an attempt to overload the victim's computer and keep it busy with useless work. There are
many opportunities for attacks of this sort, and it would be hard to anticipate them all. Instead, we will
describe an example of one attack in this category, to give the general idea. Similar principles may apply
to many other aspects of the SERVE architecture.

SERVE uses an SSL-protected website. However, SSL is susceptible to a denial-of-service attack. An
adversary could send many requests to initiate new SSL connections, and the SSL protocol requires the
recipient to perform a slow cryptographic operation (typically an RSA private-key computation) when
responding to each such request. The exact performance depends on the security level provided, but with
the fastest and lowest-security key sizes that are today considered acceptable (i.e., 1024-bit RSA), modern
computers can handle about 100 new connections per second; hardware accelerators raise this number to
thousands of new connections per second. Today's largest e-commerce sites can handle up to 15,000 new
SSL connections per second. In comparison, an attacker might be able to initiate about 500,000 new SSL
connections per second, based on the following assumption: It is plausible that an attacker could gather a
“zombie network” of 10,000 slave computers, and each computer could initiate about 50 new SSL
connections per second. Consequently, an attacker could generate 10 to 100 times more SSL traffic than
the SERVE website is likely to be able to handle. Thus, a DDoS attack against SERVE's SSL web
servers could render SERVE unreachable to voters and disrupt an election in progress.

Unfortunately, mitigating or responding to denial-of-service attacks is very difficult. Today's technology is
not up to the task. For example, no good defenses against network flooding attacks are known on today's
Internet. It may be possible to defend against the particular SSL attack we describe; however, defending
against all variants of this scheme is difficult. As an attacker will attack the weakest link in any system,
SERVE must protect against all possible denial-of-service attacks—a very difficult task.

In summary, we are concerned that, no matter how much energy is invested into defensive
countermeasures, adequate protection against denial-of-service attacks is unattainable with the technology
available today. No matter how careful the designers are, SERVE is unavoidably at risk.

4.2 The implications of denial-of-service attacks for SERVE

An attacker could mount a large-scale denial of service attack that renders SERVE's voting service
unavailable on the day of an election. Those voting on Election Day would be unable to vote, calling into
question the validity of the election.

Alternatively, network services could be knocked out or degraded for areas where a particular demographic
is known to vote for a particular party. The outcome of the election could be swayed by such an attack.
Detection of such a selective disenfranchisement attack would be possible, but it is not clear how to
respond; once polls close, there may be no good choices.

Though today’s absentee voting process already disenfranchises some voters, we fear that SERVE could
make the problem worse, not better. We recognize that UOCAVA voters are having a harder time voting
than they ought to, and there are reasons to believe that a significant number (perhaps 20-30%, according to
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some estimates) of military voters fail in their attempt to vote absentee. However, SERVE runs the risk of
exacerbating these problems. With SERVE, there is the possibility that the disenfranchisement rate could
rise to close to 100%, if a denial of service attack is successfully mounted against SERVE. In addition,
SERVE creates the risk of large-scale selective disenfranchisement, which is not present in today’s absentee
system. Large-scale selective disenfranchisement is especially problematic because it could be used to
influence the outcome of an election.

One important difference between SERVE and in person voting is that eligible voters can vote at any time
during a 30-day window starting 30 days before Election Day and extending until the close of polls on
Election Day. If voters could be persuaded to vote early in this time window, the impact of denial-of-
service attacks might be reduced: In the past, most denial-of-service attacks have lasted only for a few days,
and when the attack subsides, affected voters could then vote, if the polls had not yet closed.

However, SERVE's 30-day window cannot be relied upon to defend against denial-of-service attacks.
There are reasons to believe that a large proportion of the voting population will want to vote on Election
Day. (See Appendix B for an example). This introduces the threat of last-day denial-of-service attacks in
which the attacker mounts a denial-of-service attack starting on the morning of Election Day and lasting
until polls close. Because responding to denial-of-service attacks takes time, it is likely that an attacker
would be able to maintain a last-day denial-of-service attack all day long, so that the SERVE systems
would remain unreachable for the entire Election Day. In such a scenario, any overseas citizen who had
intended to vote on Election Day would be unable to vote through SERVE, probably would not be able to
find any alternative way to vote before the close of polls, and thus would be disenfranchised.

We expect that last-day denial-of-service attacks would disenfranchise a substantial fraction of the SERVE
population. There seems to be little that SERVE can do to defend against such attacks. For these reasons,
we consider last-day denial-of-service attacks a significant threat to the security of SERVE's elections.

5. Conclusions

Our conclusions, based on the arguments in this report are summarized as follows:

a) DRE (direct recording electronic) voting systems have been widely criticized elsewhere for various
deficiencies and security vulnerabilities: that their software is totally closed and proprietary; that
the software undergoes insufficient scrutiny during qualification and certification; that it is
especially vulnerable to various forms of insider (programmer) attacks; and that DREs have no
voter-verified audit trails (paper or otherwise) that could largely circumvent these problems and
improve voter confidence. All of these criticisms, which we endorse, apply directly to SERVE as
well.

b) But in addition, because SERVE is an Internet- and PC-based system, it has numerous other
fundamental security problems that leave it vulnerable to a variety of well-known cyber attacks,
(insider attacks, denial of service attacks, spoofing, automated vote buying, viral attacks on voter
PCs, etc.), any one of which could be catastrophic.

¢) Such attacks could occur on a large scale, and could be launched by anyone from a disaffected lone
individual to a well-financed enemy agency outside the reach of U.S. law. These attacks could
result in large-scale, selective voter disenfranchisement, and/or privacy violation, and/or vote
buying and selling, and/or vote switching even to the extent of reversing the outcome of many
elections at once, including the presidential election. With care in the design, some of the attacks
could succeed and yet go completely undetected. Even if detected and neutralized, such attacks
could have a devastating effect on public confidence in elections.

d) Tt is impossible to estimate the probability of a successful cyber-attack (or multiple successful
attacks) on any one election. But we show that the attacks we are most concerned about are quite
easy to perpetrate. In some cases there are Kits readily available on the Internet that could be
modified or used directly for attacking an election. And we must consider the obvious fact that a
U.S. general election offers one of the most tempting targets for cyber-attack in the history of the
Internet, whether the attacker’s motive is overtly political or simply self-aggrandizement.
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€) The vulnerabilities we describe cannot be fixed by design changes or bug fixes to SERVE. These
vulnerabilities are fundamental in the architecture of the Internet and of the PC hardware and
software that is ubiquitous today. They cannot all be eliminated for the foreseeable future without
some unforeseen breakthrough. It is quite possible that they will not be eliminated without a
wholesale redesign and replacement of much of the hardware and software security systems that are
part of, or connected to, today’s Internet.

f) We have examined numerous variations on SERVE in an attempt to recommend an alternative
system that may deliver somewhat less voter convenience in exchange for fewer or milder security
vulnerabilities. However, all such variations suffer from the same kinds of fundamental
vulnerabilities that SERVE does; regrettably, we cannot recommend any of them. We do suggest
a kiosk architecture as a starting point for designing an alternative voting system with similar
aims to SERVE, but that does not rely on the Internet or on unsecured PC software (Appendix
C).

g) The SERVE system might appear to work flawlessly in 2004, with no successful attacks detected.
It is as unfortunate as it is inevitable that a seemingly successful voting experiment in a U.S.
presidential election involving seven states would be viewed by most people as strong evidence
that SERVE is a reliable, robust, and secure voting system. Such an outcome would encourage
expansion of the program by FVAP in future elections, or the marketing of the same voting
system by vendors to jurisdictions all over the United States, and other countries as well. (The
existence of SERVE has already been cited as justification for Internet voting in the Michigan
Democratic caucuses.)

However, the fact that no successful attack is detected does not mean that none occurred. Many
attacks, especially if cleverly hidden, would be extremely difficult to detect, even in cases when
they change the outcome of a major election. Furthermore, the lack of a successful attack in 2004
does not mean that successful attacks would be less likely to happen in the future; quite the
contrary, future attacks would be more likely, both because there is more time to prepare the
attack, and because expanded use of SERVE or similar systems would make the prize more
valuable. In other words, a “successful” trial of SERVE in 2004 is the top of a slippery slope
toward even more vulnerable systems in the future.

h) Like the proponents of SERVE, we believe that there should be better support for voting for our
military overseas. Still, we regret that we are forced to conclude that the best course is not to
field the SERVE system at all. Because the danger of successful, large-scale attacks is so great,
we reluctantly recommend shutting down the development of SERVE immediately and not
attempting anything like it in the future until both the Internet and the world’s home computer
infrastructure have been fundamentally redesigned, or some other unforeseen security
breakthroughs appear.

We want to make clear that in recommending that SERVE be shut down, we mean no criticism of the
FVAP, or of Accenture, or any of its personnel or subcontractors. They have been completely aware all
along of the security problems we have described here, and we have been impressed with the engineering
sophistication and skill they have devoted to attempts to ameliorate or eliminate them. We do not believe
that a differently-constituted project could do any better job than the current team. The real barrier to
success is not a lack of vision, skill, resources, or dedication; it is the fact that, given the current Internet
and PC security technology, and the goal of a secure, all-electronic remote voting system, the FVAP has
taken on an essentially impossible task. There really is no good way to build such a voting system
without a radical change in overall architecture of the Internet and the PC, or some unforeseen security
breakthrough. The SERVE project is thus too far ahead of its time, and should not be reconsidered until
there is a much improved security infrastructure to build upon.
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Appendix A

The main body of the report covers some of the most serious security risks in great detail, but we did not
attempt to give an exhaustive list. This appendix is intended to supplement that list. In this appendix, we
briefly discuss several other security issues that also pose serious risks for SERVE.

Vulnerabilities in Servers Could Breach Election Security

SERVE uses centralized computers (servers) to record and forward votes. If those servers are compromised,
every ballot cast through SERVE could be modified or replaced, and the integrity of the entire election
would be irreparably damaged. Since the servers are a central single point of failure, it is absolutely vital
that they resist attack.

The risk of intrusion into SERVE's centralized computers is, unfortunately, significant. SERVE has
deployed a careful and well-designed firewalling architecture designed to prevent many kinds of direct
attacks; however, there remain possible vulnerabilities in the software exposed to the outside world that
could enable attackers anywhere on the Internet to penetrate SERVE's defenses and gain control of the
servers. Some examples of the kinds of vulnerabilities are buffer overruns, format string vulnerabilities,
directory traversal bugs, race conditions, cross-site scripting bugs, SQL injection bugs, cryptographic
failures, and session authentication weaknesses. It is important to understand that there are no
comprehensive methods for avoiding, or testing for, these vulnerabilities and bugs. As a result, even the
most widely used, exhaustively tested software in the world usually has many such vulnerabilities.
SERVE has deployed several mitigation strategies that we will not enumerate here, but these strategies are
not sufficient, in our view, to reduce the risk to acceptable levels.

High-confidence software can be found in safety-critical systems such as nuclear reactor control subsystems,
fly-by-wire passenger airplanes, the FAA's air-traffic control system, the Space Shuttle, and certain military
applications. Designers of safety-critical systems typically avoid the use of commercial software, because it
is widely accepted that standard commercial programming practices pose an unacceptable risk for such
applications. Designers of safety-critical software employ known techniques for building highly reliable
software. These elaborate and costly techniques have not been used in the development of SERVE.
Therefore, we must recognize that the standard commercial practices used in SERVE, and in the
commercial-off-the-shelf (COTS) software it builds upon, come with an unavoidable risk of failure.

Existing Processes are Inadequate for Certifying Voting
Software

Election law in most states requires that all voting systems—whether electronic or not—be qualified by an
authorized federally licensed laboratory known as an Independent Testing Authority (ITA), and then
submitted to the state for certification. The ostensible purpose of these procedures it to make sure that the
voting system meets the voluntary federal voting system standards promulgated by the FEC (and in the
future, by NIST), and that they conform to the state’s election laws. It is tempting to place a lot of faith
in certification procedures as a means for preventing security failures. We believe such faith is
unwarranted. We argue that even a lengthy, conscientious testing and examination program by the most
qualified people cannot give us the necessary security guarantees. In fact, in general, no process can, since
in most cases the problem of establishing that a program meets any particular security requirement is
known to be fundamentally unsolvable [Pfleeger03].

With electronic and Internet voting systems the most important part of the ITA qualification process is
review and testing of the software. We argue, however, that this review and testing does not, and cannot,
guarantee that the software in voting systems actually does the job it is supposed to do. Ideally one would
like the testing to be designed to verify that the software is at least correct, i.e. that it captures and counts
votes properly under all normal conditions, in any possible election, and with any legal voter behavior. It
should also verify that the software is robust and reliable, i.e. that it works reasonably even in the presence
of various bug and failure scenarios, including aberrant behavior by users (such as clerks and voters, etc.);
and that the software is secure, i.e. that it contains no internal malicious logic (Trojan horse code) and is
not vulnerable to any of a vast range of potential external attack scenarios. Unfortunately, however, neither
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the ITAs nor anyone else could perform review and testing even remotely comprehensive enough to
establish any of these properties because the time and labor involved would be truly astronomical. There
are fundamental limits to what testing can accomplish; it is a truism of the software world that while
lesting can be used to verify that bugs and security vulnerabilities are present, it can never prove that they
are absent.

What the ITAs actually do to qualify voting system software is considerably less than the ideal. They run
mock elections with test votes to verify that the software appears to work as required under normal
conditions. This amount of testing is probably sufficient to detect simple program errors and obvious
defects, although those will likely already have been found by the developers. (We do not really know
because, as we note later, results of this testing in SERVE are secret.) But generally speaking such a
testing process cannot be expected to do more than filter out the most obvious bugs, leaving intact more
subtle bugs that get triggered less frequently. And it is safe to say that the ITAs do very little testing at all
to look for software reliability, security, or malicious code problems, since testing is generally ineffective
for those purposes.

Besides testing, the ITAs also examine the source code of the software. Most of the examination is in the
form of automated scripts that run over the source and look for simple properties required by the FEC
standards, e.g. that there are sufficient comments in the code, that “modules™ in the programs are not too
long, and that each has a single entrance and exit. These are syntactic and stylistic requirements that are
only crude indicators of good engineering practices; they indicate nothing at all about the code’s
correctness, reliability, or security.

We have been told that the ITA engineers also examine the source code by eye, searching for suspicious-
looking code fragments that might indicate the presence of a bug, a security vulnerability, or malicious
logic. If so, it may give ITA engineers a better idea of the software engineering skill that went into the
program development. But it is unlikely that someone not on the development team will spot many
subtle bugs in a large codebase, because he or she can never take the time to fully understand its overall
code structure in the necessary detail. And, contrary to many people’s intuition, it is unlikely in the
extreme that anyone, whether on the development team or not, would detect malicious logic that was
deliberately disguised by a clever programmer, no matter how much effort was put into the search.'’ 1t is
much easier to hide a needle in a haystack than to find it.

However, even if the ITAs were to do an excellent job of examining the software used in election systems,
we would still have major concerns. Regrettably, the ITAs operate under the same cloak of secrecy as
voting machine vendors. Both the tests conducted by the ITAs and the results of those tests are secret.
Still, there are some things that we know about how ITAs have evaluated computerized touch screen
machines (DREs), and there are other things that we can deduce from some glaring failures in the DREs
that were not detected by the ITAs. It is reasonable to assume that the shortcomings of ITAs with respect
to DREs will carry over to their certification of Internet voting,

For example, there are fundamental differences between modern sofiware systems and previous voting
systems. In particular, today's software-based systems are orders of magnitude more complex than
mechanical and paper voting machines, and this complexity poses tremendous challenges for verification.
In a mechanical voting machine, there are only so many moving parts and only so many ways that the
system can misbehave. In contrast, modern software systems are exceptionally complex, with the
electronic equivalent of hundreds of thousands or millions of moving parts; such machines can fail in
convoluted and unpredictable ways. The very fact that Microsoft and other software vendors are forced to
issue frequent software patches (see below) demonstrates that the complexity of modern software systems
makes it impossible to detect all software errors, let alone malicious code, with testing and code reviews.
Because current methods are good at exposing only simple failures, these methods are not a reliable way of
certifying software.

Even if current practices were effective at checking that the voting system behaves as it should during
normal operation, security is by definition about the behavior of the system when it is under attack by a
malicious entity, a (hopefully) abnormal situation. Because it is hard to anticipate how attackers might

"' For an example of software problems that were undetected by ITA testing, see [Kohno03].
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behave, it is hard to test for security flaws. Existing practices almost certainly can be improved, but there
are limitations on what can be achieved given our current state of knowledge.

It is even harder to detect intentional security flaws that have been purposefully planted by insiders. After
careful consideration, we have concluded that if a malicious insider with access to SERVE software wanted
to insert a back door in SERVE's software systems, it is likely that the attacker could camouflage the
attack well enough to avoid detection by the ITA’s during the certification process, especially in the
absence of a meaningful code review.

As if these problems with the certification process were not enough, there is a giant loophole in the FEC
requirements: commercial-off-the-shelf software does not have to be tested at all by the ITAs. It is simply
assumed to be bug-free, Trojan free, and invulnerable to external attack.

And finally, we note that for systems where security is critical, testing should be done in a truly hostile
environment. As Anderson and Kuhn point out in [AK96], “although it is necessary to design commercial
security systems with much more care, it is not sufficient. They must also be subjected to hostile testing.”
The SERVE system has undergone ITA testing but has not existed in a truly hostile environment. There
are well known examples of code that underwent extreme testing and then failed when deployed in the
field. One example that illustrates this is that the first attempt to launch a space shuttle failed due to a
software synchronization error [Garmang81]. Very few software systems are tested as rigorously as that
which runs on the space shuttle, and yet a serious bug was not found until after the failure in the field.

Given these difficulties, it is no surprise that recent experiences with certification of software voting
systems have not been encouraging. Regrettably, there are no good solutions in sight. The computer
security community has been struggling with these problems for decades, and they are unlikely to be
resolved any time soon.

Commercial-Off-The-Shelf Software Poses a Major Risk to
Election Security

SERVE relies heavily on commercial-off-the-shelf (COTS) software. Voters will vote from computers
running a Microsoft operating system, and SERVE's infrastructure is built on top of commodity operating
systems and applications. We are concerned that heavy reliance on COTS software introduces significant
risks.

One of the fundamental problems with using COTS software in a voting system is that it is exempt under
FEC guidelines from evaluation by the ITA's during federal qualification. It does not have to conform to
FEC coding standards and its source code need not be inspected at all. Tt does not have to be tested at all
except in the context of the whole voting system it is part of. Most of the software comprising
SERVE—millions of lines, including the cryptographic core (i.e. the software performing the
cryptographic operations) —is COTS, and thus exempt from close scrutiny.

Some advocates of the COTS exemption argue that COTS software is everywhere—that it is the most
widely used software in the world, and thus the most thoroughly tested and reliable. We believe that this
argument is fundamentally mistaken. While we agree that COTS software is widely used, we disagree that
widespread usage is reason for confidence in its security. Indeed, broad usage experience has only
underscored the fact that the most widely used COTS operating systems and applications are riddled with
bugs and plagued by security defects. New security vulnerabilities in COTS software are discovered every
day. For instance, over 4,000 new COTS vulnerabilities were reported in 2002 alone. Such statistics
make it likely that the COTS software that SERVE relies upon will have many unknown vulnerabilities,
some of which could compromise election security if discovered and exploited.

This raises the question: “What do we do if a new security vulnerability is discovered in COTS software
upon which SERVE relies?” Currently, when a security hole is discovered, the software vendor issues a
security patch, which happens on a fairly frequent basis. Since security patches modify the voting system,
SERVE is required to resubmit the system to the ITA and to the states for certification. This procedure
normally takes about two weeks from patch issuance to installation.

Today, it is routine to see hackers exploiting new security vulnerabilities only days after they are initially
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announced or after the patch is first made available. Thus, on the one hand a two-week delay may be too
long to prevent exploitation of vulnerabilities. On the other hand, two weeks may be insufficient to
install, adequately test, and certify a new patch. Therefore, we believe that the heavy use of COTS
software in SERVE, its known security risks, and its exemption from examination during qualification
represent significant risks for SERVE.
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Appendix B

The ICANN experience

Internet voting has been occurring for several years, most typically with private elections, such as stock
holder elections or the election of officers of private organizations.

Internet elections might possibly be acceptable if the stakes are not high. For example, if the issues on
which stockholders are voting are not controversial, then there is little incentive to subvert a stockholder
election. By contrast, there is a lot of incentive to subvert national presidential and congressional
elections.

In 2000 the Internet Corporation for Assigned Names and Numbers (ICANN)' held an election over the
Internet. Anyone age 16 or older with an Internet address was eligible to vote. The world was divided
into five regions, and candidates were nominated from each region by a nominating committee. There was
also a Member Nomination process that involved the “endorsement” of a potential candidate via the
Internet.

Problems with accessing the official website occurred in every phase of the ICANN election, including
voter registration, endorsement, and voting. ICANN significantly underestimated the computing resources
that would be required, especially since people tended to wait until near the various deadlines to attempt to
access the [ICANN website. Also, some of the processes that ICANN had put in place to try to minimize
fraud, such as requiring “activation” of membership after a member had registered, were confusing to
voters. Many voters were unable to vote because they did not activate their membership by the deadline.

Even though individual passwords were mailed to physical addresses, some people claim to have voted
multiple times. There were also numerous reports of people being disenfranchised. Disenfranchisement
occurred because the ICANN website was overwhelmed by the demand, because some voters never received
their passwords or subsequently lost them, and because some voters did not realize that registration was
not sufficient for voting. In spite of difficulties with registration, about 158,000 people registered. While
76,183 of the registered voters activated their membership, the number who managed to vote in the
election was only 34,035." These numbers suggest large-scale disenfranchisement of voters at every stage
of the process, with fewer than 1/4 of the initially registered voters actually voting. According to the
Markle Foundation report, “the technical weaknesses in the registration system made it virtually
impossible to assess the integrity of the voters’ list, the security of the PINs, and secrecy of vote.”

There were also rumors of country or corporate competition to pack the voter list during the later phases of
the registration period. Technical problems experienced during the first day of voting, which took place
over a ten day period, created, according to the Markle report, “a credibility problem... with voters and
interested parties watching the process.”

" One of the authors of this paper, Barbara Simons, was nominated by the endorsement process; she was
the runner-up in North America, losing to Karl Auerbach.

" «Report on the Global, On-Line, Direct Elections for Five Seats Representing At-Large Members on the
Board of Directors, a report by the Markle Foundation, http:/www.markle.org/News/Icann2_Report. Pdf
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Appendix C

An Alternative to SERVE

Although we are concerned that the SERVE architecture has too many serious vulnerabilities to be used in
public elections, we agree nonetheless that there is a need to lower barriers to voting for overseas
Americans and the military. Here we offer an alternative architecture that we believe has most of the
benefits that SERVE offers, with far less vulnerability. We are not proposing that this scheme be adopted,
but we do suggest that it is a much better starting point for a voting system for that population.

The troubles with SERVE derive from three fundamental design choices: It uses the Internet heavily, with
all of the vulnerabilities that implies (e.g., denial of service, spoofing, and man-in-the-middle attacks). Tt
relies on voters using private, unsecured PCs with proprietary, commercial software configured to accept
mobile code, with all of the vulnerabilities that implies (e.g., virus attacks, various kinds of privacy
violations). And SERVE itself is proprietary software, with all of the vulnerabilities that implies (e.g.,
security holes, bugs, insider fraud).

We suggest building a system that avoids the dangers of these architectural features. Here is how it might
be done:

a) The system would be based on kiosks, to be located at consulates and military bases at major sites
around the world. Voters would come to the kiosk to vote, rather than vote from their own PCs.

b) The software on the kiosk would be booted from a clean copy, maintained and configured by trained
elections officials so that the software environment on the voting machine is known and controlled.

¢) The kiosk is never connected to the Internet; hence, no Internet-related attacks are possible. It receives
software and databases via disks (such as DVD Write Once Read Many (WORM)) delivered by
certified mail in advance of the election. It does not transmit ballots back to the counties by Internet;
rather, it prints them, and they are mailed back to the counties, just like any other absentee ballot.

d) The kiosk has three databases that allow it to perform the voting functions, All three together could fit
on one DVD-WORM disk.

i) An identification database to authenticate all voters who have registered to vote via the
SERVE system. This would have at most 6 million records, since that is the size of the
eligible population.

ii) A voter registration database to indicate which ballot image (style) each voter is supposed to
receive. This data is compiled from information contributed by any or all of the 3000+
county jurisdictions in the U.S. that wish to participate. There are approximately 200
million registered voters in the U.S., but only at most the 6 million records corresponding to
those eligible to vote via SERVE would be needed.

iii) A ballot image database, containing a PDF or XML representation of each ballot style used in
every county in the U.S. that is participating in SERVE. There are on the order of 100,000
such ballot styles. These also would be provided by the LEO in the counties participating in
SERVE.

e) The voter at the kiosk identifies himself or herself using military ID or other authentication
information provided by SERVE. The kiosk verifies that the voter is registered to vote, and looks up
which ballot style to issue. Then the voter indicates his or her choices on a touch screen, and prints
out a completed ballot. The voter examines the printed ballot to make sure it correctly indicates his or
her choices. (If not, the voter approaches the election official for help in voiding the ballot and re-
voting.) This last step provides for a voter-verified paper ballot, and assures that no potential bugs or
Trojan logic anywhere in the system’s code can incorrectly record the voter’s intent. Finally, the voter
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deposits the completed ballot in an envelope addressed to his home county for mailing back, again
like a traditional absentee ballot.

The system we have described is essentially a remote ballot printer located near most Americans
throughout the world. Its design would need to be fleshed out with more detail and additional security
procedures. These procedures would be charged with preventing multiple voting, managing encryption keys
for the databases, and determining what kinds of electronic record of the voting transactions the machines
keep and what they do with these records.

We stress that this architecture is not a complete system; it is only a starting point. The details would need
to be worked out, and that process could always introduce unforeseen issues. For this reason, we believe it
is crucial that any such system undergo hostile review, and that all relevant communities be involved in
the design and evaluation of the system. However, with appropriate care, we believe such a system could
deliver significant benefits. Such a system would reduce the voting transaction from three trips through the
mail down to one, and with proper development we expect it could be made far less vulnerable than
SERVE to any kind of remote or programmed attack.
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Appendix D

In this appendix, we elaborate on some of the issues that are often misunderstood about software and the
difficulty of finding hidden code or flaws in programs. We also discuss why the Internet and the current
personal computers are not appropriate platforms for voting applications.

Determining that software is free of bugs and security
vulnerabilities is generally impossible

In mathematics there is a long history of profound impossibility results, i.e. theorems stating that certain
problems are fundamentally impossible to solve regardless of how much effort or intelligence is applied to
them. For example, it is impossible to trisect an angle (divide it into three equal parts) by classical means
of ruler and straight edge construction; it is impossible to solve a Sth-degree (x°) polynomial equation
using only addition, subtraction, multiplication, division and extraction of roots; it is impossible to
construct a consistent and complete axiomatization (set of rules) for arithmetic.

Computability theory has a many such results, referred to as unsolvable or incomputable problems. They
are typically of the form “there exists no computer program that can do X”. The first and most famous
such result, due to Alan Turing, is known as the Halting Problem: there exists no program H that can
determine (in a finite number of steps) whether or not an arbitrary other program P ever halts. It does not
matter what programming language is used, or what computer is used, or how fast it is, or how much
memory is available, or how long the program is, etc.; there simply is no program H that can solve the
Halting Problem.

If a problem is unsolvable in this sense, then humans cannot solve it either. This may seem contrary to
the common observation that there are things humans can do easily that no computer program can do, e.g.
understand the English language; but these are examples of things no program yet written can do, rather
than examples of things no program at all can do. In general, if humans can perform an information
processing task, then they do so by some method in the brain. We may not know the method; but if we
did, we could write a (complex) program that emulates that same method and performs the task just as
well. There does exist a program that understands English, even if no one knows at the moment how to
write it, so understanding English is not an unsolvable problem.

Unfortunately many of the important questions one might ask about the behavior of software--its
correctness, reliability, or security--turn out to be unsolvable. Here is a partial list of such problems that
are relevant to program correctness (absence of bugs), program security, and the privacy required by election
software. They are stated informally because the mathematical apparatus to state them precisely is beyond
the scope of this report; but each could be suitably formalized and proved mathematically.

It is impossible to determine by any finite means, for an arbitrary program, whether or not it:

halts (a compressed phrasing of the Halting Problem);

has a particular type of bug (e.g. array bounds error, fencepost error, dangling pointer),

is correct (i.e. meets its specifications);

has hidden functionality (i.e. does additional things not mentioned in its specifications, especially

malicious actions);

preserves privacy (does not store or transmit information that it should not);

e isreliable (i.e. does something reasonable in spite of various kinds of failures, e.g. memory,
communication, or software failures);

e is secure (i.e. performs its job in spite of various kinds of attacks).

Reading this list one should get the impression that just about anything you really want to know about the
behavior of important software, including election software, is impossible to determine for certain. And
indeed that is the case. If there were a surefire way to detect bugs in programs, then commercial software
would be bug-free. And if there were a foolproof way to find or avoid security vulnerabilities, then
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operating systems companies would use those methods, and would not have to issue security patches on a
regular basis.

If all of these important software problems are unsolvable, then how does working, secure software get
built at all? This is the subject of software engineering. The general answer is that, with enough careful
mathematical and algorithmic analysis ahead of time, with enough methodological care and discipline on
the part of programmers, with ferocious drive for simplicity of design, with enough systematic and
randomized testing of the software, with formal proofs that key parts of the program have key properties,
and with enough openness so that the software can be scrutinized by many experts, then the prevalence of
defects such as bugs, or security vulnerabilities, can often (but not always) be made tolerably low. But
there is no method for writing totally bug free software, or totally secure software; and if by a miracle such
software were to be created, there is no general way of proving it to be bug-free or secure. This is a
mathematical fact of life. Anyone who claims that some nontrivial program is bug-free or secure simply
because it has been widely used or thoroughly tested is misinformed. No amount of use or testing is
sufficient to prove that.

Though there has been substantial research on new methods for software engineering—for instance, proof
carrying code and static program analysis, among others, these technologies are currently immature, and
they are a long way from being applicable to the complex type of software needed for elections.

Malicious code

Software is generally designed to serve a clear, documented purpose, and people rely on it doing what its
specifications and documentation say. But software can be written to do other things in addition to, or
instead of, what it is supposed to do, i.e. it may have secret or hidden functionality that is not
documented. Sometimes this is legitimate, but sometimes the hidden functionality is malicious, i.e. it
does something that the programmer or vendor wants, but the user does not want, and does it without the
knowledge of the user. Such malicious code might spy on the user by surreptitiously sending private data
to an Internet site; it might throw ads in the face of the user; it might disable security protections on the
computer to allow later break-ins by unauthorized people; it might install other unwanted programs; it
might do random violence by deleting data or files; or it might do any of a thousand other malicious
things.

The terms Trojan horse, virus, and worm all refer to types of malicious code, differing only in the means
by which they get transported to the computer and get executed. Most people are aware of email viruses,
which is malicious code in the form of an email attachment, but there are many other infection routes,
including, for example, malicious scripts (ActiveX controls, JavaScript programs, or Java applets) that can
enter your computer as an invisible side-effect of visiting a web page. Malicious code is one of the most
serious security threats in any application, because it is so easy to install, and so difficult to detect.

In the context of the SERVE voting system, malicious code is a threat in two separate ways. First, it is
possible that an insider (one of the developers who builds SERVE) might insert malicious code into the
SERVE software itself, perhaps to spy on votes or to selectively throw some away. (We don’t suggest this
is at all likely; but the fact is that it cannot be excluded.) The other threat is malicious code infecting
voters’ computers, in such a way that it spies on the voting process, or prevents voting, or even changes
votes without detection.

It is important to understand, as discussed above, that there is no foolproof test for whether or not
malicious code is installed. Virus checkers, for example, can detect the presence of viruses that have been
seen before, studied by experts, and for which a signature has been extracted; but it cannot reliably detect
new viruses. Even experts with access to the source code of a program may not be able to tell if there is
malicious code in it, since it is relatively easy to disguise malicious code so that it is extraordinarily
difficult to find.

The most powerful defense against malicious logic is for the security of the election not to depend on
detecting it at all, but to structure the voting system so that we can guarantee that it works correctly even if
malicious logic is present. Voter verified audit trails are among the simplest and strongest features that can
provide such guarantees (though there may be others). But in our opinion some form of protection against
malicious logic is imperative for any software-based voting system.
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Security weaknesses of the Internet

The Internet is revolutionizing communication, commerce, and entertainment, but in ways that were never
envisioned by its designers. The basic data transmission, naming, and routing protocols still in use on the
Internet today, called collectively TCP/IP, were designed in the late 1970°s and early 1980’s, a time when
all network users formed a single community, when the network engineers all knew each other personally,
and there was universal trust among the users. There was little need for, security because the community
of users was small and everyone was cooperative. The key goals of the Internet’s original protocols were
scalability, ease of use, communication performance, and reliability; security was not a priority, and the
issues were not well understood at the time anyway.

But today, after a million-fold growth in size, the Internet is a voluntary worldwide federation of networks
of great diversity, with no central authority and no common culture or goals. It links hundreds of millions
of people and organizations that are mostly strangers to one another, but sometimes competitors or even
enemies. In such an environment, security is of profound importance, and many security protocols have
been layered on top of the basic ones with the intent to secure certain kinds of applications, e.g. email or
financial transactions, against certain specific threats.

Yet, for all of the importance of security today, the Internet has no general security architecture; in fact, it
is well known to be full of very general vulnerabilities. It relies on the voluntary cooperation of thousands
of corporations around the world to keep its naming and routing infrastructure consistent, and it uses open,
forgeable source addresses on every packet it transmits. As a result, it is not possible to guarantee exactly
where an outgoing data packet will be routed, or where an incoming packet came from. These limitations
are the ultimate reason why spoofing and man-in-the-middle attacks are so easy to perpetrate and difficult
to defend against in any Internet application, not just elections. Likewise the routers and servers
distributed all over the world that form the Internet’s higher-level infrastructure are themselves just
computers with their own array of security vulnerabilities, known and unknown; they are often easily
tampered with, by either insiders or outsiders.

It is extremely hard, to build a secure, all-electronic Internet-based application, e.g. a banking system, a
legal system, or an election system, on top of such a fundamentally weak security foundation. In our
opinion, no one should attempt it without voter-verified audit trails and out of band (i.e. non-Internet)
channels of communication between the LEO and the voter, or else an as-yet unknown security
breakthrough.

Security weaknesses of the PC

The PC platform that is used as a voting machine under SERVE is another dangerously weak element of
the security architecture. A PC running Windows software is very easily compromised, and never more so
than when it is connected to the Internet.

The PC was originally designed as a personally owned and maintained, single-user system (which is why
it was called a “personal” computer). This fact seemed to minimize the need for sophisticated security
since the owner/user could always trust himself/herself. The Internet was not originally a security
consideration because the PC family of architectures was designed in the early 1980°s, long before there
was any thought that PCs would connect directly to the Internet. In any case, it was generally assumed
that whatever light security might be useful, such as password protection, could be satisfactorily
implemented entirely in software.

As a result, PC hardware has evolved to this day with essentially no concern for security at all. Most PC
motherboards, for example, contain no tamperproof, cryptographic keys that can be used as the basis for
identification, and no source of true random numbers for cryptographic key generation. Furthermore, the
key human interface devices for PCs (keyboard, pointer, screen, or speakers) are not designed to perform
cryptographic operations. This has the effect of forcing critical data to be manipulated in the clear
(unencrypted) on the main part of the PC, where it is vulnerable to malicious software.

The Microsoft software suite for the PC was also originally designed without security in mind. The
primary design goals of the Windows and Internet Explorer have been maximal functionality and ease of
use, not security. Only recently has Microsoft made security an important priority, but their operating
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systems are still well known to be thoroughly riddled with security vulnerabilities. Indeed, for years
hardly a week went by when Microsoft did not issue one or more security patches. Indeed, to help manage
the problem Microsoft has started batching the patches so that groups of them are released monthly.

Windows is especially vulnerable to malicious software attacks. There are so many forms of software, and
so many vectors of transmission, that it is impossible to control them all. Users are constantly encouraged
to download and install software, sometimes without knowing it, including OS and browser updates and
patches, device drivers, plug-ins for browsers and other applications, scripts associated with web pages and
office documents, shareware programs, and of course, full applications. Any of these types of programs
can contain malicious logic that might completely undermine the security of the PC, and of any votes cast
on it, without the user/voter ever finding out.

These security limitations of PC hardware and software are widely acknowledged. There is an industry-
wide consortium known as the Trusted Computing Platform Alliance (http:/www.trustedcomputing.org)
that has specified hardware additions to the PC architecture that are intended to remedy some of its security
deficiencies. So far there are no hardware implementations of the TCPA spec and no operating system
support for it. It is possible that within a few years TCPA-equipped PCs will be begin to be sold, and a
few years after that they will largely replace all of the current generation of PCs. But there is as yet no
public specification of what security features and tools Microsoft will implement using the TCPA
hardware, or whether they will suffice to permit safe Internet voting from a PC.
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