Highway Cost Allocation Study

The Oregon Highway Cost Allocation Study

Carl Batten and Sarah Dammen, ECONorthwest

Highway Cost Allocation in Oregon

- First study in 1937; 17 studies so far
- Since 1999, State Constitution has required a study every two years, and adjustment of revenue sources if found necessary
- Are the shares of revenues paid by light and heavy vehicles fair and proportionate to their shares of costs?

Highway Cost Allocation in Oregon

- Study Review Team reviews methods, data, and results, and discusses issues
 - Eleven members, chaired by State Economist
 - Doug Anderson, Metro
 - Doug Benzon, Idaho Department of Transportation
 - Jerri Bohard, Oregon Department of Transportation
 - John Gallup, Portland State University
 - Mazen Malik, Oregon Legislative Revenue Office
 - Mike McArthur, Association of Oregon Counties
 - Timothy Morgan, AAA Oregon
 - Don Negri, Willamette University
 - Jon Oshel, Association of Oregon Counties
 - Tom Potiowsky, Chair, State Economist
 - Bob Russell, Oregon Trucking Associations

What is Highway Cost Allocation?

Do various classes of highway users pay user fees in proportion to the costs they impose on the highway system?

- Define user classes
- Allocate costs to user classes
- Attribute revenues to user classes
- Calculate equity ratios
 - Share of revenue / Share of cost

Two approaches for 2011

Traditional approach

- Budgeted expenditures are assumed to represent costs and are allocated out to vehicle classes
- Efficient-fee approach
 - Costs imposed by each vehicle class are estimated directly—not tied to expenditures in any particular biennium
- Revenue attribution is the same

Oregon's Traditional Approach

- Costs to allocate are expenditures over upcoming biennium
- Expenditures of federal funds are included (because they are interchangeable)
- Expenditures by local governments of state funds are included
- Expenditures by local governments of federal and some own-source funds also are included (interchangeability and accountability)
- Chapter 2 of Traditional Report describes structure

Efficient-Fee Approach

- Wear and tear charges based on vehicle weight and configuration and on the characteristics of roads and bridges
- Congestion charges based on amount of cost imposed on other users
 - Vary by road segment and time of day
- Emissions charges based on amount of emissions

Vary with weight, speed, fuel, and location

Results of 2011 Studies

- Traditional approach
 - Light vehicle equity ratio: 0.9954
 - Heavy vehicle equity ratio: 1.0089
- Efficient-fee approach
 - Light vehicle equity ratio: 0.9873
 - Heavy vehicle equity ratio: 1.0253

Heavy Vehicles

- Vehicles between 10,001 and 26,000 pounds are overpaying
- Most vehicles between 26,001 and 78,000 pounds are underpaying
- Vehicles between 78,001 and 80,000 pounds are overpaying (1.26 equity ratio). This class accounts for 44% of heavy vehicle miles traveled.
- Most vehicles over 80,000 pounds are underpaying
- Road Use Assessment Fee Vehicles are underpaying (0.48 equity ratio)
- Full details are provided in Chapter 6 of Traditional Report

Recommendations

- No changes to rates are necessary for lightheavy fairness and proportionality
- Chapter 7 of Traditional Report describes revenue-neutral changes to rate structures that would improve equity within heavy vehicles.
 - Flatter Table "A" rate structure (28,000 lbs go from 4.98 to 10.26 cents per mile; 80,000 lbs go from 16.38 to 11.91 cents per mile)
 - Higher Table "B" rates (for example, 105,500 lbs, 7 axles go from 18.11 to 29.39 cents per mile)
 - Higher Road Use Assessment Fees (7.1 to 14.8 cents per ESAL-mile)

2011 Efficient-Fee Study

- Each vehicle would pay a fee for each mile it travels
- Fee consists of five components
 - Congestion charge based on cost of delay imposed on others
 - Wear and tear charge for roads
 - Wear and tear charge for bridges
 - Emissions charge
 - Charge for administrative and other costs
- We estimate the share of efficient-fee charges that would be paid by each vehicle class and call that their share of costs
- We then compare those shares of costs to shares of revenue under current-law instruments and rates

Efficient Congestion Charge

- Determined by cost of delay imposed on others
- Varies with volume and capacity; we assume dynamic pricing
- Since the fee won't actually be charged, we use current volumes to determine shares of cost
- We scale congestion-fee revenues to add up to revenue that would be generated if efficient fees were charged
- Congestion charge would generate \$209.5 million of annual revenue (13.4% of total)
- Light vehicles would pay 96% of the congestion charges

Efficient Wear and Tear Charge

- Determined by cost of preservation and maintenance imposed on system
- Varies with weight and configuration of vehicle and with strength and condition of road or bridge
- Wear and tear charges would generate \$453.0 million for roads and \$163.3 million for bridges, or \$616.3 million of annual revenue (39.5% of total)
- Light vehicles would pay 34.2% of road charges and 44.8% of bridge charges, or 37.0% of all wear and tear charges

Efficient Emissions Charge

- Determined by cost that emissions impose on everyone
- Best charged per unit of fuel, rather than per mile
- Emissions charges would generate \$493.6 million of annual revenue (31.7% of total)
- Light vehicles would pay 66.6% of emissions charges
- Emissions charges paid by highway users could be used to offset administrative and other costs; we assume that they will be. Remaining administrative and other costs require additional annual revenue of \$239.3 million (15.4% of total)
- Light vehicles would pay 93% of a VMT charge to recover remaining administrative and other costs

Getting to an Efficient System

- Charge vehicles for the costs they impose at the times and places they travel
 - Highway users will adjust their behavior to best meet their own needs given the costs they impose on everyone
 - When each vehicle is paying for the costs it imposes, there will be no more need for highway cost allocation studies
- Optimal investment in capacity, preservation, and maintenance
 - Highway agencies will adjust their behavior to best meet the needs of highway users
 - Where cost-effective, capacity may be provided by investing in alternative modes
- First step is better data. Need many more functioning traffic counters in Oregon.

Highway Cost Allocation Study

The Oregon Highway Cost Allocation Study

Carl Batten and Sarah Dammen, ECONorthwest

Highway Cost Allocation in Oregon

- Department of Administrative Services, Office of Economic Analysis contracts for and oversees study
- ECONorthwest, with Roger Mingo, Jack Faucett Associates, Mark Ford, and HDR conducted the 2011 study
- Brian Hedman of the Cadmus Group served as Project Manager
- ODOT staff provided data and technical assistance

Oregon's Traditional Approach

- Expenditures on bond-financed projects are reduced to amount of bond payments that will be made within the biennium (about 16% of expenditures)
- Allocated costs for bond-financed projects are carried forward to future studies until bond is paid off (nine more biennial studies)
- Additional detail in Chapter 3

Alternative-Fee-Paying Vehicles

- Subsidy amount calculated as difference between what they do pay and what they would pay if they paid regular fees
- Subsidy amount is allocated to weight classes as a "cost" in proportion to vehicle miles traveled by full-fee-paying vehicles
- Flat-fee vehicles no longer considered to be subsidized
- Additional detail in Chapter 3

Flat-fee Rates

Rate per 100 pounds per year	Logs (50% empty)	Sand & Gravel	Wood Chips
Current flat-fee rate	\$7.59	\$7.53	\$30.65
Rate to match current WMT	\$7.36	\$9.23	\$23.05
Rate to match recommended WMT	\$6.99	\$13.01	\$32.71